Super-resolution off the grid

♦ Problem: recover a superposition of k point sources in d-dim

$$x(t) = \sum_{j=1}^{k} w_j \delta_{\mu^{(j)}}.$$

using bandlimited and noise corrupted Fourier measurements.

(Fourier measurements)
$$f(s) = \int_{t \in \mathbb{R}^d} e^{i\pi \langle t, s \rangle} x(\mathrm{d}t) = \sum_{j=1}^k w_j e^{i\pi \langle \mu^{(j)}, s \rangle}.$$

(Measurement noise)
$$\widetilde{f}(s) = f(s) + z(s), \quad |z(s)| \le \epsilon_z, \forall s.$$

Super-resolution off the grid

$$x(t) = \sum_{j=1}^{k} w_j \delta_{\mu^{(j)}}.$$
 $\widetilde{f}(s) = \sum_{j=1}^{k} w_j e^{i\pi \langle \mu^{(j)}, s \rangle} + z(s), \quad \forall s$

♦ Problem

 \diamondsuit Take measurements at different s , try to recover $\mu^{(j)}$'s

♦ Goal:

- \Leftrightarrow coarse measurements (cutoff frequency $||\mathbf{s}|| < \mathbf{R}$)
- ♦ use a small number of Fourier measurements: m

Super-resolution off the grid

 $\Delta = \min_{j \neq j'} \|\mu^{(j)} - \mu^{(j')}\|_{2}$ $\Delta_{\infty} = \min_{j \neq j'} \|\mu^{(j)} - \mu^{(j')}\|_{\infty}$

Prony's method

(Matrix-Pencil / MUSIC / ESPRIT)

- **♦ Super-resolution (SDP)**
- **♦ Our algorithm**

 $||\mathbf{s}|| < \mathbf{R}$

m

no stability guarantee

$$\frac{1}{\Delta_{\infty}}$$

$$poly((\frac{1}{\Delta_{\infty}})^d, k)$$

$$\frac{1}{\Delta}$$

$$(k + d)^2$$

♦ Algorithmic idea: Prony's method on Random samples