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Motivation 

✦  Input:                multi-dimensional data points  
✦  Assumption:   mixture of Gaussian distributions 
✦  Goal:                  learn weights, means, covariance matrices 
✦  Widely used model in machine learning 
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Problem statement  

Can we learn the parameters with poly algorithm for every MoG  ? 

kµ(i)k  1

✦       -dimensional          -component   
 Parameters:     weights       ,  means        , covariance matrices 
 MoG sample generation 

n k
wi µ(i) ⌃(i)

x = N (µ(i)
,⌃(i)), i ⇠ wi
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Problem statement  

✦       -dimensional          -component   
 Parameters:     weights       ,  means        , covariance matrices 
 MoG sample generation 

Can we learn the parameters to accuracy ε in poly time using poly samples 
       for every MoG instance ? Poly(n, k, 1/!

o

, 1/✏)

n k

kµ(i)k  1

wi µ(i) ⌃(i)

x = N (µ(i)
,⌃(i)), i ⇠ wi
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Problem statement  

Can we learn the parameters with poly algorithm for every MoG  ? 

                         No! 

 “Exponential dependence in k is unavoidable in general.” [Moitra&Valiant] 

kµ(i)k  1

✦       -dimensional          -component   
 Parameters:     weights       ,  means        , covariance matrices 
 MoG sample generation  

n k
wi µ(i) ⌃(i)

x = N (µ(i)
,⌃(i)), i ⇠ wi
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 Prior works 

✓  Non-overlapping clusters  

 Pair wise clustering [Dasgupta]…[Vempala&Wang] 

✦  General case  
 Moment matching method  [Moitra&Valiant] [Belkin&Sinha] 

 

✓  Spherical, n>k, independent mean vectors 

 Lower order moments tensor decomposition [Hsu&Kakade]  

✦  Density estimation  [Chan et al] 

✦  Additional assumptions 

Poly(n, eO(k)k)

Poly(n, k)

1-dim                               Higher dim Poly(k) en
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Main result 

✦  Yes!                               worst cases are not everywhere 

 
Can we learn the parameters with poly algorithm for most MoGs? 
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Smoothed analysis Escape from the worst cases  

Given an arbitrary instance 

Nature perturbs the parameters with a small amount (ρ) of noise  

Goal:    Given samples from smoothed MoG,  learn the smoothed parameters  
                 with negligible failure probability                    over nature’s perturbation O(e�nc

)

With high probability over nature’s perturbation, an arbitrary instance 
   - escapes from the degenerate cases 
    - becomes a sufficiently well conditioned instance 

 [Spielman&Teng] 
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Smoothed analysis Escape from the worst cases  

Given an arbitrary instance 

Nature perturbs the parameters with a small amount (ρ) of noise  

Goal:    Given samples from smoothed MoG,  learn the smoothed parameters  
                 with negligible failure probability                    over nature’s perturbation O(e�nc

)

Hope：With high probability over nature’s perturbation, an arbitrary instance 
   - escapes from the degenerate cases 
    - becomes a sufficiently well conditioned instance 

 [Spielman&Teng] 
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Main theorem 

✦  Our algorithm learns the MoG parameters up to accuracy ε 

✓  For high enough dimension  

✓  With high probability under smoothed analysis 

✓  Fully polynomial time and sample complexity 

n = ⌦(k2)

(1�O(e�nc

))

Poly(n, k, 1/✏)
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Algorithmic ideas 

✦  Why high dimension helps us to learn? 

✓  Enough moment matching constraints for identifiability 
   #parameters                          #6-th moments 

✓  Enough randomness in nature’s perturbation model for well-condition 
 
    

⌦(kn2) ⌦(n6)

Gaussian matrix X 2 Rn⇥m
, with prob at least 1�O(✏n) �m(X) � ✏

p
n.

✦  Method of moments 
✓  Match the first 6-th order moments  
✓  Decomposing moments tensor   (not low rank, but structured) 

!
!
!
!
!
!
!
!
!

M4 = E[x⌦4] M6 = E[x⌦6]
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Algorithmic ideas 

✦  Why “high dimension & smooth” help us to learn? 

✓  Enough number of moment matching constraints for identifiability 
   #parameters                          #6-th moments 

✓  Enough randomness in nature’s perturbation model for well-condition 
 
    

⌦(kn2) ⌦(n6)

Gaussian matrix X 2 Rn⇥m
, with prob at least 1�O(✏n) �m(X) � ✏

p
n.

✦  Method of moments 
✓  Match the first 6-th order moments  
✓  Decomposing moments tensor 

[Rudelson&Vershynin]  
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-dimensional      -component  smoothed MoG 

Learn 0-mean MoG 

Given empirical moments  tensor 

Learn parameters:   weights        ,  covariance matrices 

n k

wi ⌃(i)

✦  Notation 

Clean moment structure 

✦  Why 0-mean? 

x = N (0,⌃(i)), i ⇠ wi
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✦  Low rank tensor decomposition,          ‘s are independent 

Learn spherical MoG, spectral method review 

✦  Construct a low rank tensor from the moments tensor 
[Hsu&Kakade]  

µ(i)

x = N (µ(i)
,�In), i ⇠ wi

M2 = E[xx>] =
Pk

i=1 wiµ
(i)(µ(i))> + �In

M3 = E[x⌦3] =
Pk

i=1 wiµ
(i) ⌦ µ

(i) ⌦ µ

(i) + � terms
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✦  Low rank tensor decomposition,          ‘s are independent 

Learn spherical MoG, spectral method review 

✦  Construct a low rank tensor from the moments tensor 

Low rank matrix M2 =
kX

i=1

wiµ
(i)(µ(i))> + �In

M3 =
kX

i=1

wiµ
(i) ⌦ µ(i) ⌦ µ(i) + � terms

µ(i)

Low rank tensor 

x = N (µ(i)
,�In), i ⇠ wi
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Learn 0-mean general covariance MoG 

X4 =
kX

i=1

wivec(⌃
(i))⌦ vec(⌃(i))

X6 =
kX

i=1

wivec(⌃
(i))⌦ vec(⌃(i))⌦ vec(⌃(i))

x = N (0,⌃(i)), i ⇠ wi
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Moments structure of 0-mean MoG 

[X4]1,2,3,4 =
kX

i=1

wi⌃
(i)
1,2⌃

(i)
3,4

Want low rank matrix! 

Have empirical moments 

✦  Isserlis’ theorem for 4-th moments 

[M4]1,2,3,4 = E[x1x2x3x4]

=
kX

i=1

wi

⇣
⌃(i)

1,2⌃
(i)
3,4 + ⌃(i)

1,3⌃
(i)
2,4 + ⌃(i)

1,4⌃
(i)
2,3

⌘

X4 =
kX

i=1

wivec(⌃
(i))⌦ vec(⌃(i))
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Moments structure of 0-mean MoG 

Want low rank tensor! 

Have empirical moments 

✦  Isserlis’ theorem for 6-th moments 

[M
6

]
1,2,3,4,5,6 = E[x

1

x

2

x

3

x

4

x

5

x

6

]

=
kX

i=1

wi

⇣
⌃(i)

1,2⌃
(i)
3,4⌃

(i)
5,6 + ⌃(i)

1,3⌃
(i)
2,4⌃

(i)
5,6 + · · ·

| {z }
15 ways to partition {1,2,. . . 6} into 3 pairs

⌘

[X6]1,2,3,4,5,6 =
kX

i=1

wi⌃
(i)
1,2⌃

(i)
3,4⌃

(i)
5,6

X6 =
kX

i=1

wivec(⌃
(i))⌦ vec(⌃(i))⌦ vec(⌃(i))
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Unfold Moments Tensor M4 M6 

✦  Recover low rank tensors from their linear projections 
 Looks like matrix sensing, but standard method does not apply 

M4 = F4(X4)

M6 = F6(X6)

Estimate from data Desired low rank tensor! Structured linear projection 
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Exploit low rank property of X4 X6 to unfold M4 M6 

✦  Given                          the k-dim span of                        , change variable  

✦  Find        by examine the structure of   
✓  1-d columns of M4 are related to columns of  
✓  2-d slices of M4 are related to  

M4 = F4(X4)

vec(⌃(i))0s

�n
4

�
⇡ n4

24

U 2 Rn2

2 ⇥k

M4 = F4(U>Y4U)
�n
4

�
⇡ n4

24

U M4

X4 = U>Y4U

⌃(i)’s

⌃(i)’s

Underdetermined linear eqn’s 

Unique solution! 

M4

⇡ n4

8

⇡ k2

2
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Exploit low rank property of X4 X6 to unfold M4 M6 

✦  Given                          the k-dim span of                        , change variable  

✦  Find        by examine the structure of   
✓  1-d columns of M4 are related to columns of  
✓  2-d slices of M4 are related to  

M4 = F4(X4)

vec(⌃(i))0s

�n
4

�
⇡ n4

24

U 2 Rn2

2 ⇥k

M4 = F4(U>Y4U)
�n
4

�
⇡ n4

24

U M4

X4 = U>Y4U

⌃(i)’s

⌃(i)’s

Underdetermined linear eqn’s 

Unique solution! 

M4

⇡ n4

8

⇡ k2

2
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Algorithm outline. Learn 0-mean MoG 

✦  Step 1. Find the span of  

✦  Step 2.  Use the span to change variable and  
     unfold the M4 M6 to get unfolded moments X4 X6 

✦  Step 3. Low rank tensor decomposition to recover   

vec(⌃(i))0s

X6 =
Pk

i=1 wivec(⌃(i))⌦ vec(⌃(i))⌦ vec(⌃(i))

X4 =
Pk

i=1 wivec(⌃(i))⌦ vec(⌃(i))

vec(⌃(i))0s

Each step involves basic matrix operations   
( poly time and poly stable ! ) 
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Sketch of proofs 

  Deterministic conditions for correctness and stability of each step 

✦  Step 1. Find the span of   
     Rank factorization of matrices constructed with M4 
     Randomness from ρ-perturbation to guarantee         
            the factors are full rank. 

✦  Step 2. Unfold M4, M6 to get X4, X6 

     Solving over-determined linear system 
     Randomness from ρ-perturbation to guarantee  
     the coefficient matrix is full rank. 

✦  Step 3. Tensor decomposition of X4, X6 

      Randomness from ρ-perturbation to guarantee  
     tensor factors are well-conditioned 

vec(⌃(i))0s
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Algorithm outline. Learn General MoG 

✦  Step 1. Find the span of                and span of                projected to  
 
✦  Step 2. In the subspace                                find                  use our 0-mean algorithm 

✦  Step 3. Find the                 using  

✦  Step 4. Find the full covariance matrices  

µ(i)’s ⌃(i)’s span{µ(i)}?

span{µ(i)}? ⌃(i)’s

µ(i)’s M3

⌃(i)’s
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Take away messages 

✦  Provide a fully poly algorithm under smoothed analysis 
  (avoid worst case complexity exponential in k) 
  

✦  Can potentially relax                         by using higher order moments? 
✦  Other “hard problems” in learning? 

n � ⌦(k2)

Thank you!  Question? 


