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Motivation

Input: multi-dimensional data points
Assumption: mixture of Gaussian distributions
Goal: learn weights, means, covariance matrices

Widely used model in machine learning



Problem statement

+ m-dimensional k-component
Parameters: weights w; , means u'®), covariance matrices X(9)
MoG sample generation = N (', X)) 4 ~ w,

Can we learn the parameters with poly algorithm for every MoG ?
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Problem statement

+ m-dimensional k-component
Parameters: weights w; , means u'®), covariance matrices X(9)
MoG sample generation = N (', X)) 4 ~ w,

Can we learn the parameters with poly algorithm for every MoG ?

No! (@D

“Exponential dependence in k is unavoidable in general.” [Moitra&Valiant]



Prior works

+ General case Poly(n, BO(k)k)

Moment matching method [Moitra&Valiant] [Belkin&Sinha]

+ Additional assumptions Poly(n, k)

v Non-overlapping clusters

Pair wise clustering [Dasguptal...[Vempala&Wang]

v Spherical, n>k, independent mean vectors

Lower order moments tensor decomposition [Hsu&Kakade]

+ Density estimation [Chan etal]

1-dim Poly(k)  Higherdim e"



Main result

Can we learn the parameters with poly algorithm for most MoGs?

WOrst cases are not everywhere
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Smoothed analysis Escape from the worst cases

Given an arbitrary instance

Nature perturbs the parameters with a small amount (p) of noise

Goal: Given samples from smoothed MoG, learn the smoothed parameters
with negligible failure probability O(e=™") over nature's perturbation

[Spielman&Teng]

Hope: With high probability over nature's perturbation, an arbitrary instance

- escapes from the degenerate cases
- becomes a sufficiently well conditioned instance

10



Main theorem

+ Our algorithm learns the MoG parameters up to accuracy €
¢ For high enough dimension n = Q(k?)
v With high probability under smoothed analysis (1— O(e_nc))

¢ Fully polynomial time and sample complexity Poly(n,k,1/¢)
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Algorithmic ideas

+ Method of moments
v Match the first 6-th order moments

v Decomposing moments tensor (not low rank, but structured)

M, = 4:[56@)4] M6 — 43[IE®6]




Algorithmic ideas

+ Method of moments
v Match the first 6-th order moments

v Decomposing moments tensor

+ Why “high dimension & smooth” help us to learn?

v Enough number of moment matching constraints for identifiability
#parameters Q(kn?) #6-th moments 2(n°)

v Enough randomness in nature’s perturbation model for well-condition

Gaussian matrix X € R™*™ with prob at least 1 — O(€") 0,,(X) > ey/n.
[Rudelson&Vershynin]
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Learn O-mean MoG

+ Why 0-mean?
r=N(0,2%), i ~w;

|
|

W

Clean moment structure /

+ Notation

n -dimensional k-component smoothe

d MoG

Given empirical moments tensor M, =

‘4:[£E®4] M

02 ®°]

Learn parameters: weights w; , covariance matrices 3(%)



Learn spherical MoG, spectral method review

=N, ol,), i~ w;

+ Construct a low rank tensor from the moments tensor

[Hsu&Kakade]

My

slow?] = X

k

1=

ez "] = 30w ()T 401,

1 wz-,u(i) & ,u(i) & ,LL(i) + o terms
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Learn spherical MoG, spectral method review
=N, ol,), i~ w;

+ Construct a low rank tensor from the moments tensor

k
Low rank matrix Mo = Z wi,u(i) (M(’i))T +%
i=1

k
Low rank tensor Mg = Z wi,u(i) 0 ,u(i) & ,u(i) -+ s

1=1

1

+ Low rank tensor decomposition, ©{¥ ‘s are independent
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Learn O-mean general covariance MoG

r=N(0,Z0), i ~w;
k . .
Xy = Z wivec(LW) @ vec(Z)
i=1

k
Xg = Z wivec(E(i)) R VGC(Z(i)) 02 VeC(Z(i))
i=1
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Moments structure of O-mean Mo(G

+ lIsserlis’ theorem for 4-th moments

Have empirical moments
(Myl1234 =Elzi1220324]
k

i (EOSE + SOEG 4 5050))
1

1

Want low rank matrix!

i k: y )y
qm [X4]1’2’374 — szzgiézgi

k
Xy = Z wivec(L W) @ vec(2?)
i=1
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Moments structure of O-mean Mo(G

+ lIsserlis’ theorem for 6-th moments

Have empirical moments
(Mgl1.23.456 = Elz1r003042576]

S wi( =00s + SO+ )

J/

15 ways to partition {1,2,...6} into 3 pairs

Want low rank tensor!

| qm [X6]1,2,3,4,5,6 — Z wzxggzgizg)@
Xe = ZineC(Z(i)) ® vec(S™") @ vec(S™)

1=1
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Unfold Moments Tensor M, M,

My = F4(Xy)

Estimate from data Structured linear projection  Desired low rank tensor!

Mg = Fg(Xs)

X, = Zle wz-vec(Z(i)) X VeC(Z(i))
Xg = Zle w;vec(() @ vec(BW) @ vec(LW)

+ Recover low rank tensors from their linear projections

Looks like matrix sensing, but standard method does not apply
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Exploit low rank property of X, X to unfold M, M,

M4 — f4(X4)

n\ ~_ n . . ,
(4) ~ 52 ~ "o~ Underdetermined linear eqn’s

+ Given U € R ** the k-dim span of vec(S®)'s, change variable X, —

M, = Fu(UTY,U)

n\ ~ n- o k? : o
(3) ~ 5 S Unique solution!

UT

ViU
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Exploit low rank property of X, X to unfold M, M,

M4 — .F4(X4
(%) =~ 3’—1 ~ %4

+ Given U € R ** the k-dim span of vec(X(®)'s, change variable

M, = ]—‘4(UT'Y4'U)

4 24

2

+ Find U by examine the structure of My
v 1-d columns of M, are related to columns of »(0)g

¢ 2-d slices of M, are related to X(*)’s

X4

2 . .
WEE ~ B Unique solution!

= U

Y, U

Underdetermined linear egn’s

22



Algorithm outline. Learn O-mean MoG

+ Step 1.Find the span of vec(%(¥)'s

+ Step 2. Use the span to change variable and
unfold the M, M, to get unfolded moments X, X,

Xq = Z,I;:l ’inGC(Z(i)) X VGC(Z(i))
Xe = Zf:l wivec(LW) @ vec(LW) ® vec(L?)

+ Step 3. Low rank tensor decomposition to recover VeC(Z(i))’S

Each step involves basic matrix operations
( poly time and poly stable !)
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Sketch of proofs

Deterministic conditions for correctness and stability of each step

+ Step 1. Find the span of VeC(Z(i))/S
Rank factorization of matrices constructed with M,

Randomness from p-perturbation to guarantee
the factors are full rank.

+ Step 2. Unfold M,, M, to get X, X,
Solving over-determined linear system

Randomness from p-perturbation to guarantee
the coefficient matrix is full rank.

+ Step 3. Tensor decomposition of X, X,

Randomness from p-perturbation to guarantee
tensor factors are well-conditioned
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Algorithm outline. Learn General MoG

Step 1. Find the span of 1;(i)’s and span of 3(:)’s projected to span{u(9}+
Step 2. In the subspace span{,u(i) }L find 2)’s use our 0-mean algorithm
Step 3. Find the (s using M3

Step 4. Find the full covariance matrices »(#)7g
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Algorithm outline. Learn General MoG

119 $(4) g span{ p) 3+

+ Step 2.In the subspace SPCW{,u(i)}L find 2*)’s use our 0-mean algorithm

,LL(i)7S M3

ORS
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Take away messages

+ Provide a fully poly algorithm under smoothed analysis

(avoid worst case complexity exponential in k)

+ Can potentially relaxn > Q(k?) by using higher order moments?

+ Other “hard problems” in learning?

oy

Thank you! Question?
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