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Abstract

We consider the problem of accurately recovering a matrix B of size M ⇥M , which represents a
probability distribution over M2 outcomes, given access to an observed matrix of “counts” generated
by taking independent samples from the distribution B. How can structural properties of the
underlying matrix B be leveraged to yield computationally e�cient and information theoretically
optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the
sparse data regime? This basic problem lies at the core of a number of questions that are currently
being considered by di↵erent communities, including community detection in sparse random graphs,
learning structured models such as topic models or hidden Markov models, and the e↵orts from
the natural language processing community to compute “word embeddings”. Many aspects of this
problem—both in terms of learning and property testing/estimation and on both the algorithmic
and information theoretic sides—remain open.

Our results apply to the setting where B has a rank 2 structure. For this setting, we propose
an e�cient (and practically viable) algorithm that accurately recovers the underlying M ⇥ M
matrix using ⇥(M) samples. This result easily translates to ⇥(M) sample algorithms for learning
topic models with two topics over dictionaries of size M , and learning hidden Markov Models with
two hidden states and observation distributions supported on M elements. These linear sample
complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic
properties of the underlying matrix (such as whether it has rank 1 or 2) requires ⌦(M) samples.
Furthermore, we provide an even stronger lower bound where distinguishing whether a sequence of
observations were drawn from the uniform distribution over M observations versus being generated
by an HMM with two hidden states requires ⌦(M) observations. This precludes sublinear-sample
hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample
estimators for quantities such as the entropy rate of HMMs. This impossibility of sublinear-sample
property testing in these settings is intriguing and underscores the significant di↵erences between
these structured settings and the standard setting of drawing i.i.d samples from an unstructured
distribution of support size M .
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1 Introduction

Consider an unknown M ⇥ M matrix of probabilities B, satisfying
P

i,j Bi,j = 1. Suppose one is
given N independently drawn (i, j)-pairs, sampled according to the distribution defined by B. How
many draws are necessary to accurately recover B? What can one infer about the underlying matrix
based on these samples? How can one accurately test whether the underlying matrix possesses certain
properties of interest? How do structural assumptions on B — for example, the assumption that
B has low rank — a↵ect the information theoretic or computational complexity of these questions?
For the majority of these tasks, we currently lack both a basic understanding of the computational
and information theoretic lay of the land, as well as algorithms that seem capable of achieving the
information theoretic or computational limits.

This general question of making accurate inferences about a matrix of probabilities, given a matrix
of observed “counts” of discrete outcomes, lies at the core of a number of problems that disparate com-
munities have been tackling independently. On the theoretical side, these problems include both work
on community detection in stochastic block models (where the goal is to infer the community member-
ships from an adjacency matrix drawn according to an underlying matrix expressing the community
structure) as well as the line of work on recovering topic models, hidden Markov models (HMMs),
and richer structured probabilistic models (where the model parameters can often be recovered using
observed count data). On the practical side, these problems include the recent work in the natural
language processing community to infer structure from matrices of word co-occurrence counts for the
purpose of constructing good “word embeddings”, as well as latent semantic analysis and non-negative
matrix factorization.

In this work, we start this line of inquiry by focusing on the estimation problem where the prob-
ability matrix B possesses a rank 2 structure. While this estimation problem is rather specific, it
generalizes the basic community detection problem and also encompasses the underlying problem be-
hind learning 2-state HMMs and learning 2-topic models. Furthermore, this rank 2 case also provides a
means to study how inferential and testing problems are di↵erent in this structured setting as opposed
to the simpler rank 1 setting; the latter is equivalent to the standard setting of 2 independent draws
from a distribution supported on M elements.

We focus on the estimation of B at the information theoretic limit. The motivation for this is
that in many practical scenarios involving count samples, we seek algorithms capable of extracting
the underlying structure in the sparsely sampled regime. To give two examples, consider forming the
matrix of word co-occurrences—the matrix whose rows and columns are indexed by the set of words,
and whose (i, j)th element consists of the number of times the ith word follows the jth word in a
large corpus of text. One could also consider a matrix of genetic mutation co-occurrences, whose rows
and columns are indexed by known mutations and whose (i, j)th entry is the number of individuals
that have both mutations. In both settings, the structure of the probability matrix underlying these
observed counts contains insights into the two domains, and in both domains we only have relatively
sparse data. This is inherent in many other natural scenarios involving heavy-tailed distributions,
where regardless of how much data one collects, a significant fraction of items (e.g. words, genetic
mutations) will only be observed a few times.

Such estimation questions have been actively studied in the community detection literature, where
the objective is to accurately recover the communities in the regime where the average degree (e.g. the
row sums of the adjacency) is a constant. In contrast, the recent line of works for recovering highly
structured models (such as large topic models, HMMs, etc.) are only applicable to the over-sampled
regime (the amount of data is well beyond the information theoretic limits), where achieving the
information theoretic limits remains a widely open question. This work begins to bridge the divide
between these recent algorithmic advances in both communities. In particular, the rank-2 probability
matrix B can be e�ciently recovered with a number of sample counts that is linear in M . The next
questions are how to develop information theoretically optimal algorithms for estimating low rank
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matrices and tensors in general, which may be a far more challenging setting; we hope that some of
our algorithmic techniques can be extended here.

In addition to developing algorithmic tools which we hope are applicable to a wider class of prob-
lems, a second motivation for considering this rank 2 case is that, with respect to distribution learning
and property testing, the entire lay-of-the-land seems to change completely when the probability ma-
trix B has rank larger than 1. In the rank 1 setting — where a sample consists of 2 independent
draws from a distribution supported on {1, . . . , M} — the distribution can be learned using ⇥(M)
draws. Nevertheless, many properties of interest can be tested or estimated using a sample size that
is sublinear in M1. However, in the rank 2 setting, even though the underlying matrix B can be
represented with O(M) parameters (and, as we show, it can also be accurately recovered with O(M)
sample counts), sublinear sample property testing and estimation is generally impossible. This result
begs the more general question: what conditions must be true of a structured statistical setting in
order for property testing to be easier than learning?

1.1 Problem Formulation

Assume our vocabulary is the index set M = {1, . . . , M} of M words and that there is an underlying
low rank probability matrix B, of size M ⇥ M , with the following structure:

B = DWD>, where D =
h

p, q
i

. (1)

Here, D = RM⇥2

+

is the dictionary matrix parameterized by two M -dimensional probability vectors
p, q, supported on the standard (M � 1)-simplex. Also, W is the 2 ⇥ 2 mixing matrix, which is a
probability matrix satisfying W 2 R2⇥2

+

,
P

i,j Wi,j = 1.
Define the covariance matrix of any probability matrix P as:

[Cov(P )]i,j := Pi,j � (
X

k

Pi,k)(
X

k

Pk,j).

Note that Cov(P )~1 = ~0 and ~1>Cov(P ) = ~0 (where ~1 and ~0 are the all ones and zeros vectors,
respectively). This implies that, without loss of generality, the covariance of the mixing matrix,
Cov(W ), can be expressed as:

Cov(W ) = [wL, �wL]>[wR, �wR].

for some real numbers wL, wR 2 [�1, 1]. For ease of exposition, we restrict to the symmetric case
where wL = wR = w, though our results hold more generally.

Suppose we obtain N , i.i.d. sample counts from B of the form {(i
1

, j
1

) (i
2

, j
2

), . . . (iN , jN )}, where
each sample (in, jn) 2 M ⇥ M. The probability of obtaining a count (i, j) in a sample is Bi,j .
Moreover, assume that the number of samples follows a Poisson distribution: N ⇠ Poi(N). The
Poisson assumption on the number of samples is made only for the convenience of analysis: if N
follows a Poisson distribution, the counts of observing (i, j) follows a Poisson distribution Poi(NBi,j)
and is independent from the counts of observing (i0, j0) for (i0, j0) 6= (i, j). This assumption is made
only for the convenience of analysis and is not crucial for the correctness of the algorithm. As M is
asymptotically large, with high probability, N and N are within a subconstant factor of each other and
both upper and lower bounds translate between the Poissonized setting, and the setting of exactly N
samples. Throughout, we state our sample complexity results in terms of N rather than N.

1

Distinguishing whether a distribution is uniform versus far from uniform can be accomplished using only O(

p
M)

draws, testing whether two sets of samples were drawn from similar distributions can be done with O(M2/3
) draws,

estimating the entropy of the distribution to within an additive ✏ can be done with O(

M
✏ logM ) draws, etc.
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Notation Throughout the paper, we use the following standard shorthand notations.
Denote [n] , {1, . . . , n}. Let I denote a subset of indices in M. For a M -dimensional vector x,

we use vector x
I

to denote the elements of x restricting to the indices in I; for two index sets I, J ,
and a M ⇥ M dimensional matrix X, we use X

I⇥J

denote the submatrix of X with rows restricting
to indices in I and columns restricting to indices in J .

We use Poi(�) to denote a Poisson distribution with rate �; we use Ber(�) to denote a Bernoulli
random variable with success probability �; and we use Mul(x; �) to denote a multinomial distribution
over M outcomes with � number of trials and event probability vector x 2 RM

+

such that
P

i xi = 1.

1.2 Main Results

1.2.1 Recovering Rank-2 Probability Matrices

Throughout, we focus on a class of well-separated model parameters. The separation assumptions
guarantee that the rank 2 matrix B is well-conditioned. Furthermore, this assumption also has natural
interpretations in each of the di↵erent applications (to that of community detection, topic modeling,
and HMMs).

All of our order notations are with respect to the vocabulary size M , which is asymptotically large.
Also, we say that a statement is true “with high probability” if the failure probability of the statement
is inverse poly in M ; and we say a statement is true “with large probability” if the failure probability
is of some small constant �, which can be easily boosted to very smaller probabilities with repetitions.

Assumption 1 (⌦(1) separation). Assume that W is symmetric, where wL = wR = w (all our
results extend to the asymmetric case). Define the marginal probability vector, ⇢ and the dictionary
separation vector as:

⇢i :=
X

k

Bi,k, � := w(p � q) . (2)

Assume that the `
1

-norm of the dictionary separation is lower bounded by some constant C
�

= ⌦(1),

k�k
1

� C
�

. (3)

Note that while in general the dictionary matrix D and the mixing matrix W are not uniquely
identifiable from B, there does exist an identifiable decomposition. Observe that the matrix Cov(B)
admits a unique rank-1 decomposition: Cov(B) := B � ⇢⇢> = ��>, which also implies that:

B = ⇢⇢> + ��>. (4)

It is this unique decomposition we seek to estimate, along with the matrix B.
Now we are ready to state our main theorem.

Theorem 1.1 (Main theorem). Suppose we have access to N i.i.d. samples generated according to
the rank 2 probability matrix B with structure given by (1) and satisfying the separation Assumption 1.
For ✏ > 0, with N = ⇥(M/✏2) samples, our algorithm runs in time poly(M) and returns estimators
bB, b⇢, b�, such that with large probability:

k bB � Bk
1

 ✏, kb⇢ � ⇢k
1

 ✏, kb� � �k
1

 ✏.

(here, the `
1

-norm of an M ⇥ M matrix P is simply defined as kPk
1

=
P

i,j |Pi,j |).

First, note that we do not bound the spectral error k bB � Bk
2

since when the marginal ⇢ is not
roughly uniform, error bounds in terms of spectral distance are not particularly strong. A natural
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error measure of estimation for probability distributions is total variation distance (equivalent to our `
1

norm here). Second, note that naively estimating a distribution over M2 outcomes requires order M2

samples. Importantly, our algorithm utilizes the rank 2 structure of the underlying matrix B to achieve
a sample complexity which is precisely linear in the vocabulary size M (without any additional log
factors). The proof of the main theorem draws upon recent advances in the concentration of sparse
random matrices from the community detection literature; the well characterized problem in the
community detection literature can be viewed as a simple and special case of our problem, where the
marginals are homogeneous (which we discuss later).

We now turn to the implications of this theorem to testing and learning problems.

1.2.2 Topic Models and Hidden Markov Models

One of the main motivations for considering the specific rank 2 structure on the underlying matrix B
is that this structure encompasses the structure of the matrix of expected bigrams generated by both
2-topic models and two state HMMs. We now make these connections explicit.

Definition 1.2. A 2-topic model over a vocabulary of size M is defined by a pair of distributions, p
and q supported over M words, and a pair of topic mixing weights ⇡p and ⇡q = 1 � ⇡p. The process
of drawing a bigram (i, j) consists of first randomly picking one of the two “topics” according to the
mixing weights, and then drawing two independent words from the word distribution corresponding to
the chosen topic. Thus the probability of seeing bigram (i, j) is (⇡ppipj + ⇡qqiqj), and so the expected

bigram matrix can be written as B = DWD> with D = [p, q], and W =



⇡p 0
0 ⇡q

�

.

The following corollary shows that estimation is possible with sample size linear in M :

Corollary 1.3. (Learning 2-topic models) Suppose we are in the 2-topic model setting. Assume that
⇡p(1 � ⇡p)kp � qk

1

= ⌦(1). There exists an algorithm which, given N = ⌦(M/✏2) bigrams, runs in
time poly(M) and with large probability returns estimates b⇡p, bp, bq such that

|b⇡p � ⇡p| < ✏, kbp � pk
1

 ✏, kbq � qk
1

 ✏.

Definition 1.4. A hidden Markov model with 2 hidden states (sp, sq) and a size M observation
vocabulary is defined by a 2 ⇥ 2 transition matrix T for the 2 hidden states, and two distributions of
observations, p and q, corresponding to the 2 states.

A sequence of N observations is sampled as follows: First, select an initial state according to
the stationary distribution of the underlying Markov chain [⇡p, ⇡q]; Then evolve the Markov chain
according to the transition matrix T for N steps; For each n 2 {1, . . . , N}, the n-th observation in
the sequence is generated by making an independent draw from either distribution p or q according to
whether the Markov chain is in state sp or sq at the n-th timestep.

The probability that seeing a bigram (i, j) for the n and the (n + 1)-th observation is given by
⇡ppi(Tp,ppj + Tp,qqj) + ⇡qqi(Tq,ppj + Tq,qqj), and hence the expected bigram matrix can be written as

B = DWD> with D = [p, q], and W =



⇡p 0
0 ⇡q

� 

Tp,p 1 � Tp,p

1 � Tq,q Tq,q

�

.

We have the following learning result:

Corollary 1.5. (Learning 2-state HMMs) Suppose we are in the 2-state HMM setting. Assume that
kp�qk

1

� C
1

and that ⇡p, Tp,p, Tq,q are lower bounded by C
2

and upper bounded by 1�C
2

, where both
C
1

and C
2

are ⌦(1). There exists an algorithm which, given a sampled chain of length N = ⌦(M/✏2),
runs in time poly(M) and returns estimates b⇡p, bT , bp, bq such that, with high probability, we have (that
there is exists a permutation of the model such that)

|b⇡p � ⇡p| < ✏, | bTp,p � Tp,p| < ✏, | bTq,q � Tq,q| < ✏, kbp � pk
1

 ✏, kbq � qk
1

 ✏.
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Furthermore, it is su�cient for this algorithm to only utilize ⌦(M/✏2) random bigrams and only
⌦(1/✏2) random trigrams from this chain.

It is worth noting that the matrix of bigram probabilities does not uniquely determine the under-
lying HMM. However, one can recover the model parameters using sampled trigram sequences; this
last step is straightforward (and sample e�cient as it uses only an additional ⌦(1/✏2) trigrams) when
given an accurate estimate of B (see [6] for the moment structure in the trigrams).

1.2.3 Testing vs. Learning

The above theorem and corollaries are tight in an extremely strong sense. Both for the topic model
and HMM settings, while we can learn the models using ⌦(M) samples/observations, in both settings,
it is information theoretically impossible to perform even the most basic property tests using fewer
than ⇥(M) samples.

In the case of 2-topic models, the community detection lower bounds [41][32][52] imply that ⇥(M)
bigrams are necessary to even distinguish between the case that the underlying model is simply the
uniform distribution over bigrams versus the case of a 2-topic model in which each topic corresponds
to a uniform distribution over disjoint subsets of M/2 words. We prove a stronger lower bound for
the case of HMMs with two states, where we permit an estimator to have more information, namely
the full sequence of observations (not merely bigram and trigram counts). Perhaps surprisingly, even
with this extra information, we have the following lower bound:

Theorem 1.6. Given a sequence of observations from a HMM with two states and emission dis-
tributions p, q supported on M elements, even if the underlying Markov process is symmetric, with
transition probability 1/4, it is information theoretically impossible to distinguish the case that the two
emission distributions, p = q = Uniform[M ] from the case that ||p � q||

1

� 1/2 using a sequence of
fewer than ⇥(M) observations.

The proof of this theorem is given in Appendix 5.2, and amounts to a careful comparison of the
processes of generating a uniformly random path in a graph, versus generating a path corresponding
to a 2-state HMM for which there is significant correlation between consecutive observations. As
an immediate corollary of this theorem, it follows that many natural properties of HMMs cannot be
estimated using a sublinear length sequence of observations.

Corollary 1.7. For HMMs with 2 states and emission distributions supported on a domain of size at
most M , to estimate the entropy rate up to an additive constant c  1 requires a sequence of ⌦(M)
observations.

These strong lower bounds for property testing and estimation of HMMs are striking for several
reasons. First, the core of our learning algorithm is a matrix reconstruction step that uses only the set
of bigram counts (though we do use trigram counts for the final parameter recovery). Conceivably, one
could benefit significantly from considering longer sequences of observations — even in HMMs that
mix in constant time, there are detectable correlations between observations separated by O(log M)
steps. Regardless, our lower bound shows that this is not the case. No additional information from
such longer k-grams can be leveraged to yield sublinear sample property testing or estimation.

A second notable point is the brittleness of sublinear property testing and estimation as we deviate
from the standard (unstructured) i.i.d sampling setting. In particular, while it may be natural to expect
that testing and estimation would become rapidly more di�cult as the number of hidden states of
an HMM increase, we see here a (super-constant) increase in the di�culty of testing and estimation
problems between the one state setting to the two state setting.
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1.3 Related Work

As mentioned earlier, the general problem of reconstructing an underlying matrix of probabilities
given access to a count matrix drawn according to the corresponding distribution, lies at the core of
questions that are being actively pursued by several di↵erent communities. We briefly describe these
questions, and their relation to the present work.
Community Detection. With the increasing prevalence of large scale social networks, there has been
a flurry of activity from the algorithms and probability communities to both model structured random
graphs, and understand how (and when it is possible) to examine a graph and infer the underlying
structures that might have given rise to the observed graph. One of the most well studied community
models is the stochastic block model [27]. In its most basic form, this model is parameterized by a
number of individuals, M , and two probabilities, ↵, �. The model posits that the M individuals are
divided into two equal-sized “communities”, and such a partition defines the following random graph
model: for each pair of individuals in the same community, the edge between them is present with
probability ↵ (independently of all other edges); for a pair of individuals in di↵erent communities, the
edge between them is present with probability � < ↵. Phrased in the notation of our setting, the
adjacency matrix of the graph is generated by including each potential edge (i, j) independently, with
probability Bi,j , with Bi,j = ↵ or � according to whether i and j are in the same community. Note
that B has rank 2 and is expressible in the form of Equation 1 as B = DWD> where D = [p, q] for
vectors p = 2

M I
1

and q = 2

M I
2

where I
1

is the indicator vector for membership in the first community,

and I
2

is defined analogously, and W is the 2 ⇥ 2 matrix with ↵M2

4

on the diagonal and �M2

4

on the
o↵-diagonal.

What values of ↵, �, and M enable the community a�liations of all individuals to be accurately
recovered with high probability? What values of ↵, �, and M allow for the graph to be distinguished
from an Erdos-Renyi random graph (that has no community structure)? The crucial regime is where
↵, � = O( 1

M ), and hence each person has a constant, or logarithmic expected degree. The naive
spectral approaches will fail in this regime, as there will likely be at least one node with degree
⇡ log M/ log log M , which will ruin the top eigenvector. Nevertheless, in the past four years a number
of transformations of the adjacency matrix have been proposed, after which the spectral approach will
enable constant factor optimal detection (the problem of distinguishing the community setting from
G(n, p) and reconstruction in this constant degree regime (see e.g. [22, 40, 32, 33]). In the past year,
for both the exact recovery problem and the detection problem, the exact tradeo↵s between ↵, �, and
M were established, down to subconstant factors [41, 1, 36]. More recently, there has been further
research investigating more complex stochastic block models, consisting of three or more components,
components of unequal sizes, etc. (see e.g. [19, 2]).

Word Embeddings. On the more applied side, some of the most impactful advances in natural
language processing over the past two years has been work on “word embeddings” [37, 35, 46, 9].
The main idea is to map every word w to a vector vw 2 Rd (typically d ⇡ 500) in such a way that
the geometry of the vectors captures the semantics of the word.2 One of the main constructions for
such embeddings is to form the M ⇥ M matrix whose rows/columns are indexed by words, with i, jth
entry corresponding to the total number of times the ith and jth word occur next to (or near) each
other in a large corpus of text (e.g. wikipedia). The word embedding is then computed as the rows of
the singular vectors corresponding to the top rank d approximation to this empirical count matrix.3

These embeddings have proved to be extremely e↵ective, particularly when used as a way to map

2

The goal of word embeddings is not just to cluster similar words, but to have semantic notions encoded in the

geometry of the points: the example usually given is that the direction representing the di↵erence between the vectors

corresponding to “king” and “queen” should be similar to the di↵erence between the vectors corresponding to “man”

and “woman”, or “uncle” and “aunt”, etc.

3

A number of pre-processing steps have been considered, including taking the element-wise square roots of the entries,

or logarithms of the entries, prior to computing the SVD.
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text to features that can then be trained in downstream applications. Despite their successes, current
embeddings seem to su↵er from sampling noise in the count matrix (where many transformations
of the count data are employed, e.g. see [45])—this is especially noticeable in the relatively poor
quality of the embeddings for relatively rare words. The recent theoretical work [10] sheds some light
on why current approaches are so successful, yet the following question largely remains: Is there a
more accurate way to recover the best rank-d approximation of the underlying matrix than simply
computing the best rank-d approximation for the (noisy) matrix of empirical counts?

E�cient Algorithms for Latent Variable Models. There is a growing body of work from the
algorithmic side (as opposed to information theoretic) on how to recover the structure underlying
various structured statistical settings. This body of work includes work on learning HMMs [29, 39, 17],
recovering low-rank structure [8, 7, 14], and learning or clustering various structured distributions such
as Gaussian mixture models [20, 51, 38, 13, 28, 31, 24] and latent dirichlet allocation (a very popular
topic model) [5]. A number of these methods essentially can be phrased as solving an inverse moments
problem, and the work in [6] provides a unifying viewpoint for computationally e�cient estimation
for many of these models under a tensor decomposition perspective. In general, this body of work has
focussed on the computational issues and has considered these questions in the regime in which the
amount of data is plentiful—well above the information theoretic limits.

Sublinear Sample Testing and Estimation. In contrast to the work described in the previous
section on e↵orts to devise computationally e�cient algorithms for tackling complex structural settings
in the “over–sampled” regime, there is also significant work establishing information theoretically
optimal algorithms and (matching) lower bounds for estimation and distributional hypothesis testing
in the most basic setting of independent samples drawn from (unstructured) distributions. This
work includes algorithms for estimating basic statistical properties such as entropy [43, 26, 47, 49],
support size [44, 47], distance between distributions [47, 49, 48], and various hypothesis tests, such
as whether two distributions are very similar, versus significantly di↵erent [11, 42, 50, 15], etc. While
many of these results are optimal in a worst-case (“minimax”) sense, there has also been recent
progress on instance optimal (or “competitive”) estimation and testing, e.g. [3, 4, 50], with stronger
information theoretic optimality guarantees. There has also been significant work on these tasks in
“simply structured” settings, e.g. where the domain of the distribution has a total ordering or where
the distribution is monotonic or unimodal [16, 12, 30, 21].

2 Outline of our estimation algorithm

In this section, we sketch the outline of our algorithm and explain the intuition behind the key ideas.
Given N samples drawn according to the probability matrix B. Let BN denote the matrix of

empirical counts, and let 1

N BN denote the average. By the Poisson assumption on sample size, we
have that [BN ]i,j ⇠ Poi(NBi,j).

First, note that it is straightforward to obtain an estimate b⇢ which is close to the true marginal
⇢ with ✏ accuracy in `

1

norm with sample complexity N = ⌦(M). Also, recall that B � ⇢⇢> = ��>

as per (4), hence after subtracting o↵ the (relatively accurate) rank 1 matrix of marginals, we are
essentially left with a rank 1 matrix recovery problem. Our algorithm seeks to accurately perform this
rank-1 decomposition using a linear sample size, N = ⇥(M).

Before introducing our algorithm, let us consider the naive approach of estimating � by taking the
rank-1 truncated SVD of the matrix ( 1

N BN � b⇢b⇢>), which concentrates to ��> in spectral distance
asymptotically. Unfortunately, this approach leads to a sample complexity as large as ⇥(M2 log M).
In the linear sample size regime, the empirical counts matrix is a poor representation of the underlying
distribution. Intuitively, due to the high sampling noise, the rows and columns of BN corresponding
to words with larger marginal probabilities have higher row and column sums in expectation, as
well as higher variances that undermine the spectral concentration of the matrix as a whole. This
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observation leads to the idea of pre-scaling the matrix so that every word (i.e. row/column) is roughly
of unit variance. Indeed, with a slight modification of the truncated SVD, we can improve the sample
complexity of this approach to ⇥(M log(M)), which is nearly linear. It is, however, not obvious how
to further improve this. Appendix E provides a detailed analysis of these aforementioned truncated
SVD approaches.

Next, we briefly discuss the important ideas of our algorithm that lead to the linear sample com-
plexity. Our algorithm consists of two phases: For a small constant ✏

0

, Phase I of our algorithm
returns estimates b⇢ and b� both up to ✏

0

accuracy in `
1

norm with ⇥(M) samples; After the first phase
gets us o↵ the ground, Phase II builds upon the output of Phase I to refine the estimation to any
target accuracy ✏ with ⇥(M/✏2) samples. The outline of the two phases are given in Algorithm 1 and
Algorithm 2, separately, and the detailed analysis of the algorithms are deferred to Section 3 and 4.

The guarantees of the main algorithm follows immediately from Theorem 2.1 and 2.2.

Phase I: “binning” and “regularization” In Section 1, we drew the connection between our
problem and the community detection problem in sparse random graphs. Recall that when the word
marginals are roughly uniform, namely all in the order of O( 1

M ), the linear sample regime corresponds
to the stochastic block model setup where the expected row / column sums are all in the order of
d
0

= N
M = ⌦(1). It is well-known that in this sparse regime, the adjacency matrix, or the empirical

count matrix BN in our problem, does not concentrate to the expectation matrix in the spectral
distance. Due to some heavy rows with row sum in the order of ⌦( logM

log logM ), the leading eigenvectors
are polluted by the local properties of these heavy nodes and do not reveal the global structure of the
graph, which are precisely the desired information in expectation.

In order to enforce spectral concentration in the linear sample size regime, one of the many tech-
niques is to tame the heavy rows and columns by setting them to 0. This simple idea was first
introduced by [23], and followed by analysis works in [22] and many others. Recently in [33] and [34]
the authors provided clean and clever proofs to show that any such “regularization” essentially leads
to better spectral concentration for the adjacency matrix of random graphs whose row/column sums
are roughly uniform in expectation.

Is it possible to leverage such “regularization” ideas in our problem where the marginal probabilities
are not uniform? A natural candidate solution would be to partition the vocabulary M into bins of
words according to the word marginals, so that the words in the same bin have roughly uniform
marginals. Restricting our attention to the diagonal blocks of B whose indices are in the same bin, the
expected row / column sums are indeed roughly uniform. Then we can regularize each diagonal block
separately to guarantee spectral concentration, to which truncated SVD should then apply. Figure 1a
visualizes the two operations of “binning” and “regularization”.

Even though the “binning” idea seems natural, there are three concerns one needs to rigorously
address in order to implement the idea:

1. We do not have access to the exact marginal ⇢. With linear sample size, we only can estimate ⇢ up
to constant accuracy in `

1

norm. If we implement binning according to the empirical marginals,
there is considerable probability that words with large marginals are placed in a bin intended
for words with small marginals — which we call “spillover e↵ect”. When directly applied to the
empirical bins with such spillover, the existing results of “regularization” in [34] do not lead to
the desired concentration result.

2. When restricting to each diagonal block corresponding to a bin, we are throwing away all the
sample counts outside the block. This greatly reduces the e↵ective sample size, and it is not
obvious that we retain enough samples in each diagonal block to guarantee meaningful concen-
tration results and subsequent estimation. This is particularly worrying because we may use a
super-constant number of bins, and hence throw away all but a subconstant fraction of data for
some words.
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Input: 2N sample counts.

Output: Estimator b⇢, b�, bB.

Divide the sample counts into two independent batches of equal size N , and construct two
empirical count matrices BN1

and BN2

.

1. (Estimate the marginal) b⇢i = 1

N

P

j2[M ]

[BN1

]i,j .

2. (Binning) Partition the vocabulary M into:

bI
0

=
�

i : b⇢i < ✏
0

M

 

, bI
log

=
n

i : b⇢i > log(M)

M

o

, bIk =
n

i : ek

M  b⇢i  ek+1

M

o

, k = 1 : log log(M).

3. (Estimate the separation b�)

(a) (Estimate b�b
I

log

) (up to sign flip)

If
P

b⇢b
I

log

< ✏
0

, set b�b
I

log

= 0, else

i. (Rescaling): Set E = diag(b⇢b
I

log

)�1/2[BN2

� b⇢b⇢>]b
I

log

⇥

b
I

log

diag(b⇢b
I

log

)�1/2.

ii. (t-SVD): Let u
log

u>

log

be the rank-1 truncated SVD of E.

iii. Set v
log

= diag(b⇢b
I

log

)1/2u
log

.

(b) (Estimate b�b
Ik

) (up to sign flip)

If
P

b⇢b
Ik

< ✏
0

e�k, set b�b
Ik

= 0, else

i. (Regularization): Set eB = [BN2

]b
Ik⇥

b
Ik

, set dmax

k = N(
P

b⇢b
Ik

) e
k+⌧

M .

If a row/column of eB has sum larger than 2dmax
k , set the entire row/column to 0.

Set E = ( eB � b⇢b
Ik
b⇢>b
Ik

).

ii. (t-SVD): Let vkv>k be the rank-1 truncated SVD of E.

(c) (Estimate b�b
I

0

) Set b�b
I

0

= 0.

(d) (Stitching b�b
Ik
’s ) Fix k⇤ = arg maxk kvkk, set b�b

I

⇤

k
= vk⇤ .

For all k 6= k⇤, consider the block Ek,k⇤ = [BN2

� b⇢b⇢>]b
Ik⇥

b
Ik⇤

. Set ↵k =
P

i,j
[Ek,k⇤ ]i,j

(vk)i(v
⇤

k)j
;

Set b�b
Ik

= (1[↵k > 0] � 1[↵k < 0])vk.

4. Return b⇢, b�, and bB = b⇢b⇢> + b�b�>.

Algorithm 1: Phase I

3. Even if the “regularization” trick works for each diagonal block, we need to extract the useful
information and “stitch” together this information from each block to provide an estimator for
the entire matrix, which includes the o↵-diagonal blocks.

Phase I (Algorithm 1) capitalizes on these natural ideas of “binning” and “regularization”, and
avoids the above potential pitfalls. We show that the algorithm satisfies the following guarantees:

Theorem 2.1 (Main theorem 1. ⇥(M) sample complexity for achieving constant accuracy in `
1

norm). Fix ✏
0

to be a small constant. Given N = ⇥(M) samples, with large probability, Phase I
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Input: Estimator b⇢ and b� from Phase I. N sample counts.

Output: Refined estimator b⇢, b�, bB.

1. (Construct anchor partition)

Set A = �. For k = 1, . . . , log log M, log:

If kb�b
Ik

k
2

 (
p

dmax

k

N )1/2, skip the bin, else, set A = A [ {i 2 bIk : b�i > 0}.

2. (Estimate anchor matrix)

Set B
A

=



P

i2A,j2A[BN ]i,j
P

i2A,j2Ac [BN ]i,j
P

i2Ac,j2A[BN ]i,j
P

i2Ac,j2Ac [BN ]i,j

�

. Set vector b =



P

i2A,j2M[BN ]i,j
P

i2Ac,j2M[BN ]i,j

�

.

Set aa> to be rank-1 truncated SVD of the 2 ⇥ 2 matrix (B
A

� bb>).

3. (Refine the estimation:)

Set



b⇢>

b�>

�

= [a, b]�1



P

i2A[BN ]i,M
P

i2Ac [BN ]iM

�

4. (Return) b⇢, b� and bB = b⇢b⇢> + b�b�>.

Algorithm 2: Phase II

(Algorithm 1) estimates ⇢ and � up to ✏
0

accuracy in `
1

norm, namely

kb⇢ � ⇢k
1

< ✏
0

, kb� � �k
1

< ✏
0

, k bB � Bk
1

< ✏
0

.

Phase II: “Anchor partition” Under the Assumption of ⌦(1) separation, Phase II of our algo-
rithm makes use of the estimates of � computed by Phase I, to refine the estimates of ⇢ and �.

The key to this refining process is to construct an “anchor partition”, which is a bi-partition of
the vocabulary M based on the signs of the estimate of separation b� given by Phase I. We collapse
the M ⇥ M matrix BN into a 2 ⇥ 2 matrix corresponding to the bi-partition, and accurately estimate
the 2 ⇥ 2 matrix with the N samples. Given this extremely accurate estimate of this 2 ⇥ 2 anchor
matrix, we can now iteratively refine our estimates of ⇢i and �i for each word i by solving a simple
least square fitting problem.

The above description may seem opaque, but similar ideas — estimation refinement based on some
crude global information — has appeared in many works for di↵erent problems. For example, in a
recent paper [19] on community detection, after obtaining a crude classification of nodes using spectral
algorithm, one round of a “correction” routine is applied to each node based on its connections to
the graph partition given by the first round. This refinement immediately leads to an optimal rate
of recovery. Another example is given in [18] in the context of solving random quadratic equations,
where local refinement of the solution follows the spectral method initialization. Figure 1b visualize
the example of community detection. In our problem, the nodes are the M words, the edges are
the sample counts, and instead of re-assigning the label to each node in the refinement routine, we
re-estimate the ⇢i and �i for each word i.

Theorem 2.2 (Main theorem 2. ⇥(M/✏2) sample complexity to achieve ✏ accuracy in `
1

norm).
Assume that B satisfies the ⌦(1) separation assumption. Given N samples, with large probability,

10



Phase II of our algorithm (Algorithm 2) estimates ⇢ and � up to accuracy in `
1

norm:

kb⇢ � ⇢k
1

< O(

r

M

N
), kb� � �k

1

< O(

r

M

N
), k bB � Bk

1

< O(

r

M

N
).

. . .

BN

[BN ]bIk�bIk

bIk

b⇢i large b⇢i small

b⇢i small

bIk

Regularize heavy row/column

(a) Binning and regularization

Anchor partition

Refinement
(b) Anchor partition and refinement

Figure 1: The key algorithmic ideas of our algorithm.

3 Algorithm Phase I, achieving constant ✏0 accuracy

In this section, we outline the proof for Theorem 2.1, the detailed proofs are provided in Section A
and B in the appendix.

We denote the ratio between sample size and the vocabulary size by

d
0

=
N

M
. (5)

Throughout our discussion for Phase I algorithm, we assume that d
0

= ⇥(1) to be some fixed large
constant.

Given N samples, the goal is to estimate the word marginal vector ⇢ as well as the dictionary
separation vector � up to constant accuracy in `

1

norm. We denote the estimates by b⇢ and b�. Also,
we estimate the underlying probability matrix B with

bB = b⇢b⇢> + b�b�>.

Note that since k�k
1

 k⇢k
1

= 1, constant `
1

norm accuracy in b⇢ and b� immediately lead to constant
accuracy of bB also in `

1

norm.
First, we show that it is easy to estimate the marginal probability vector ⇢ up to constant accuracy.

Lemma 3.1 (Estimate the word marginal probability ⇢). Given the empirical count matrix BN1

constructed with the first batch of N sample counts, consider the estimate of the marginal probabilities:

b⇢i =
1

N

X

j2M

[BN1

]i,j . (6)

With large probability, we can bound the estimation accuracy by:

kb⇢ � ⇢k
1

 O(

r

1

d
0

). (7)
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The hard part is to estimate the separation vector � up to constant accuracy in `
1

norm with linear
number of sample counts, namely d

0

= ⇥(1). Recall that naively taking the rank-1 truncated SVD
of ( 1

N BN � b⇢b⇢>) fails to reveal any information about ��>, since in the linear sample size regime,
the leading eigenvectors of BN are mostly dominated by the statistical noise of the words with large
marginal probabilities. Our Phase I algorithm achieves this with more delicate steps. We analyze each
step in the next 5 subsections, structured as follows:

1. In Section 3.1, we introduce the binning argument and the necessary notations for the rest of
the section. We bin the vocabulary M according to the estimates of word marginals, i.e. b⇢, and
we call a bin heavy or light according to the typical word marginals in that bin.

2. In Section 3.2 we analyze how to estimate the entries of � restricted to the heaviest bin (up to
some common sign flip). Because the marginal probabilities of words in this bin are su�ciently
large, truncated SVD can be applied to the properly scaled diagonal block of the empirical
average count matrix.

3. In Section 3.3 we analyze how to estimate the entries of � restricted to all the other bins (up
to some common sign flip), by examining the corresponding diagonal blocks in the empirical
average count matrix.

The main challenge here is that due to the estimation error of the word marginal vector b⇢,
the binning is not perfect, in the sense that a lighter bin may include some heavy words by
chance. Lemma 3.4 is the key technical lemma, which shows that with high probability, such
spillover e↵ect is very small for all bins with high probability. Then we leverage the clever proof
techniques from [34] to show that if spillover e↵ect is small, regularized truncated SVD can be
applied to estimate the entries of � restricted to each bin.

4. In Section 3.4, we analyze the lightest bin.

5. In Section 3.5 we show how to fix the sign flips across di↵erent bins, by using the o↵-diagonal
blocks, so that we can concatenate di↵erent sections of b� to obtain an estimator for the entire
separation vector �.

3.1 Binning according to empirical marginal distribution

Instead of tackling the empirical count matrix BN as a whole, we focus on its diagonal blocks and
analyze the spectral concentration restricted to each block separately. Since the entries Bi,j restricted
to each diagonal block are roughly uniform, the block hopefully concentrates well, so that we can
estimate segments of the separation vector � by using truncated SVD with the “regularization” trick.

For any set of words I, we use [BN ]
I,I to denote the diagonal block of BN whose indices are in

the set I. Note that when restricting to the diagonal block, the rank 2 decomposition in (4) is given
by B

I,I = ⇢
I

⇢>
I

+ �
I

�>

I

.

Empirical binning We partition the vocabulary M according to the empirical marginal b⇢ in (6):

bI
0

=
n

i : b⇢i <
✏
0

M

o

, bIk =

⇢

i :
ek�1

M
 b⇢i  ek

M

�

, bI
log

=

⇢

i : b⇢i >
log(M)

M

�

.

We call this empirical binning to emphasize the dependence on the empirical estimator b⇢, which is a
random variable built from the first batch of N sample counts. We call bI

0

the lightest empirical bin,
and bI

log

the heaviest empirical bin, and bIk for 1  k  log log M the moderate empirical bins.
For the analysis, we further define the exact bins according to the exact marginal probabilities:

I
0

=
n

i : ⇢i <
✏
0

M

o

, Ik =

⇢

i :
ek�1

M
 ⇢i  ek

M

�

, Ilog =

⇢

i : ⇢i >
log(M)

M

�

. (8)
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Spillover e↵ect As N increases asymptotically, we have bIk coincides with Ik for each k. However,
in the linear sample size regime, the estimation error in b⇢ cause the following two spillover e↵ects:

1. Words from the heavy bin Ik0 , for k0 much larger than k, are placed in the empirical bin bIk.

2. Words from the exact bin Ik escape from the corresponding empirical bin bIk;

The hope, that we can have good spectral concentration in each diagonal block [BN2

]b
Ik⇥

b
Ik

, crucially
relies on the fact that the entries Bi,j restricted to this block are roughly uniform. However, the hope
may be ruined by the spillover e↵ects, especially the first one. In the following sections, we show that
with high probability the spillover e↵ects are small for all empirical bins of considerable probability
mass, in particular:

1. The total marginal probability of the words in the empirical bin bIk, that are from faraway exact
bins, namely [

{k0:k0�k+⌧}Ik0 , is small and in the order of O(e�ekd
0) (see Lemma 3.4).

2. Most words of Ik stays within the nearest empirical bins, namely [
{k0:k�⌧k0k+⌧}

bIk0 , (see
Lemma 4.5).

Throughout the discussion, we fix some small constant number ⌧ to be:

⌧ = 1 (9)

Notations To analyze the spillover e↵ects, we define some additional quantities.
We define the total marginal probability mass in the empirical bins to be:

Wk =
X

i2b
Ik

⇢i, (10)

and let Mk = |bIk| denote the total number of words in the empirical bin. We also definecWk =
P

i2b
Ik
b⇢i.

We use bJk to denote the set of the words from much heavier bins that are spilled over into the
empirical bin bIk (recall that ⌧ is a small constant):

bJk = bIk \ ([
{k0:k0�k+⌧}Ik0), (11)

and let bLk denote the “good words” in the empirical bin bIk:

bLk = bIk\ bJk. (12)

where ⌧ We also denote the total marginal probability mass of the heavy spillover words bJk by:

W k =
X

i2 b
Jk

⇢i. (13)

Note that these quantities are random variables determined by the randomness of the first batch
of N samples, via the empirical binning. These are fixed quantities when we consider the empirical
count matrix with the second batch of N samples.

Define the upper bound of the “typical” word marginal in the k-th empirical bin to be:

⇢k = ek+⌧/M,

and let dmax

k denote the expected max row/column sum of the diagonal block corresponding the k-th
bin:

dmax

k = NWk⇢k. (14)
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3.2 Estimate � restricted to the heaviest empirical bin

First, we show that the empirical marginal probabilities restricting the heaviest bin concentrate much
better than what Lemma 3.1 implies.

Lemma 3.2 (Concentration of marginal probabilities in the heaviest bin). With high probability, for
all the words with marginal probability ⇢i � log(M)/M , we have that for some universal constant
C
1

, C
2

,

C
1

 b⇢i/⇢i  C
2

. (15)

Lemma 3.2 says that with high probability, we can estimate the marginal probabilities for every
words in the heaviest bin with constant multiplicative accuracy. Note that it also suggests that actually
we do not need to worry about the spillover e↵ect of the words from I

log

placed in much lighter bins,

since with high probability, all the words stay in the bin bI
log

and a constant number of adjacent
empirical bins.

Next two lemmas show that with square root re-scaling, truncated SVD works to estimate the
segment of separation restricted to the empirical heaviest bin.

Lemma 3.3 (Estimate � restricted to the heaviest empirical bin). Suppose that cW
log

=
P

b⇢b
I

log

> ✏
0

.

Define bDb
I

log

= diag(b⇢b
I

log

), and consider the diagonal block corresponding to the heaviest empirical bin

bI
log

:

E = bD�1/2
b
I

log

(
1

N
[BN2

]b
I

log

,bI
log

� b⇢b
I

log

b⇢>b
I

log

) bD�1/2
b
I

log

. (16)

Let uu> denote the rank 1 truncated SVD of matrix E, set v
log

= bD1/2
b
I

log

u. With high probability over

the second batch of N samples, we can estimate �b
I

log

, the dictionary separation vector restricted to

the heaviest empirical bin, with v
log

up to sign flip with accuracy:

min{k�b
I

log

� v
log

k
1

, k�b
I

log

+ v
log

k
1

} = O

 

min

(

1/d1/2
0

k�b
I

log

k
1

, 1/d1/4
0

)!

. (17)

The two cases in the above bound correspond to whether the separation is large or small, compared

to the statistical noise from sampling, which is in the order 1/d1/4
0

. If the bin contains a large
separation, then the bound follows the standard Wedin’s perturbation bound; if the separation is

small, i.e. k�b
I

log

k
1

⌧ 1/d1/4
0

, then the bound 1/d1/4
0

just corresponds to the magnitude of the

statistical noise.

3.3 Estimate � restricted to the log log(M) moderate empirical bins

In this section, we show that the spillover e↵ects are small for all the moderate bins (Lemma 3.4). In
particular, we upper bound the total spillover marginal W k for all k with high probability. Provided
that the spillover e↵ects are small, we show that (Lemma 3.5 and Lemma 3.6) truncated SVD with
regularization can be applied to each diagonal block of the empirical count matrix BN2

, to estimate
the entries of the separation vector � restricted to each bin. The proofs of this section are provided
in Section B in the appendix.

Lemma 3.4 (With high probability, spillover from much heavier bins is small). With high probability
over the first batch of N sample counts, for all empirical bins {bI

0

, bI
1

, . . . bI
log log(M)

}, we can bound the

total marginal probability of spillover from much heavier bins, i.e. W k defined in (13), by:

W k  2e�e⌧+kd
0

/2. (18)
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Also, if Wk > ✏
0

e�k, we can bound the number of spillover words Mk by:

Mk  Mk/dmax

k . (19)

Recall that ⌧ is set in (9), Wk is defined in (10), and dmax

k = NWk⇢k is defined in (14).

Now consider [BN2

]b
Ik⇥

b
Ik

, the diagonal block corresponding to the empirical bin bIk. To ensure the
spectral concentration of this diagonal block, we “regularize” it by removing the rows and columns
with very large sum. The spectral concentration of the block with the remaining elements leads to an
estimate of the separation vector �b

Ik
restricted to bLk, the set of “good words” defined in (12). To

make the operation of “regularization” more precise, we need to introduce some additional notations.
Define e⇢k to be a vector with the same length as ⇢b

Ik
, with the same entries for the good words,

and set the entries corresponding to the spillover set bJk to be 0, namely

(e⇢k)i = ⇢i1
h

i 2 bLk

i

.

Similarly define vector e�k to be the separation restricted to the good words in the empirical bins:

(e�k)i = �i1
h

i 2 bLk

i

. (20)

We define the matrix eBk (of the same size as [BN2

]b
Ik⇥

b
Ik

):

eBk = e⇢ke⇢
>

k + e�k
e�>

k . (21)

Recall that the expected max row sum of the diagonal block is given by dmax

k = NWk⇢k defined in

(14). Let bRk denote the indices of the rows and columns in [BN2

]b
Ik,bIk whose row sum or column sum

are larger than 2dmax

k , namely

bRk =

8

<

:

i 2 bIk :
X

j2b
Ik

[BN2

]i,j > 2dmax

k or
X

j2b
Ik

[BN2

]j,i > 2dmax

k

9

=

;

. (22)

Starting with eBk = [BN2

]b
Ik⇥

b
Ik

, we set all the rows and columns of eBk indexed by bRk to 0.

Note that by definition the rows and columns in eBk and eBk that are zero-ed out do not necessarily
coincide. However, the next lemma shows that eBk concentrates to eBk in the spectral distance.

Lemma 3.5 (Concentration of regularized diagonal block eBk.). Suppose that the marginal of the bin
bIk is large enough Wk =

P

⇢b
Ik

> ✏
0

e�k. With high probability at least (1 � M�r
k ), where r is some

universal constant, we have

�

�

�

�

1

N
eBk � eBk

�

�

�

�

2

 Cr1.5
p

dmax

k log2 dmax

k

N
, (23)

Proof. Detailed proof of this lemma is provided in Section B in the appendix. Here we highlight the
key steps of the proof.

In Figure 2, the rows and the columns of [BN ]b
Ik⇥

b
Ik

are sorted according to the exact marginal
probabilities of the words in ascending order. The rows and columns that are set to 0 by regularization
are shaded. Consider the block decomposition according to the good words bLk and the spillover words
bJk. We bound the spectral distance of the 4 blocks (A

1

, A
2

, A
3

, A
4

) separately. The bound for the
entire matrix bBk is then an immediate result of triangle inequality.
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For block A
1

whose rows and columns all correspond to the “good words” with roughly uniform
marginals, we show its concentration by applying the result in [34]. For block A

2

and A
3

, we want to
show that after regularization the spectral norm of these two blocks are small. Intuitively, the expected

row sum and the expected column sum of block A
2

are bounded by 2dmax

k and 2dmax

k
Wk
Wk

= O(1), as a

result of the bound on the spillover words W k in Lemma 3.4. Therefore the spectral norm of the block
are likely to be bounded by O(

p

dmax

k ), which we show rigorously with high probability arguments.
Lastly for block A

4

, which rows and columns all correspond to the spillover words. We show that the
spectral norm of this block is very small as a result of the small spillover marginal W k.

It is also important to note that given Wk > ✏
0

e�k and conditional on the high probability even
that W k  2e�ekd

0 , we can write dmax

k also as dmax

k = NMk⇢2k.

bIk

A1

A2

A3

bLk

bLk 0

0

bJk

bJk

NB bLk� bJk

0

[BN ]bIk�bIk

set to 0 if row/column sum larger than 2dmax
k

regularization:

NeBk = N(e⇢ke⇢�
k + e�k

e��
k )

Figure 2: block decomposition of the diagonal block of BN2

corresponding to bIk.

Lemma 3.6 (Given spectral concentration of block eBk, estimate the separation e�k). Suppose that the
marginal of the bin bIk is large enough Wk =

P

⇢b
Ik

> ✏
0

e�k. Let vkv>k be the rank-1 truncated SVD

of the regularized block
⇣

1

N
eBk � b⇢b

Ik
b⇢>b
Ik

⌘

. With high probability over the second batch of N samples,

min{ke�k � vkk2, ke�k + vkk2} = O

0

@min

8

<

:

p

dmax

k log2 dmax

k

N

1

k�b
Ik

k
2

,

 

p

dmax

k log2 dmax

k

N

!

1/2
9

=

;

1

A .

(24)

Namely vk is an estimate of the vector e�k (defined as in (21)), up to some unknown sign flip.

3.4 Estimate � restricted to the lightest empirical bin.

Claim 3.7 (Estimate separation restricted to the lightest bin). Setting b�b
I

0

= 0 only incurs an `
1

error of a small constant, and this is simply because the total marginal of words in the lightest bin with
high probability can be bounded by a small constant:

k�b
I

0

k
1

 k⇢b
I

0

k
1

 k⇢
I

0

k
1

+ W
0

 ✏
0

M
M + e�d

0

/2 = O(✏
0

),
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where we used the assumption that d
0

� 1/✏4
0

.

3.5 Stitching the segments of b� to reconstruct an estimation of the matrix

Form 4 sets, S1 =words w in first bin with tw ¿ 0, S1’ = words w in first bin with tw <= 0, S2 =words
w in second bin with tw > 0, S2’ = words w in second bin with tw >= 0. Merge all words in each of
the sets, and compare Pr[S1, S2]/Pr[S2] to Pr[S1, S20]/Pr[S20]. If the first quantity is larger, then t
and t’ have the same sign, otherwise negate t’.

Claim 3.8 (Pairwise comparison of bins to fix sign flips). Given vk for all k as estimation for �b
Ik
’s

up to sign flips. Fix k⇤ to be one good bin (with large bin marginal and large separation). For all other
good bins k,

examine the o↵-diagonal block Ek,k⇤ = [ 1

N BN2

� b⇢b⇢>]b
Ik,bI0

k
, which in expectation equals �k�>

k⇤ =

ckvkv>k⇤ , thus we can estimate the sign flip of k with respect to k⇤, by

↵kk⇤ =
X

i,j

[Ek,k⇤ ]i,j
(vk)i(vk⇤)j

,

and set vk = (1[↵kk0 > 0] � 1[↵kk0 < 0])vk. Finally, we have b� = [b�b
I

0

, bv
1

, . . . , bv
log logM , bv

log

], as an
estimator for �.

Finally, concatenate the segments of b�, we can summarize to bound the overall estimation error
in `

1

norm:

Lemma 3.9 (Accuracy of b� of Phase I). For fixed ✏
0

= ⌦(1) to be a small constant, if d
0

=: N/M �
1/✏4

0

, with large probability, Phase I algorithm can estimate the separation vector � with constant
accuracy in `

1

norm:

kb� � �k = O(✏
0

).

4 Algorithm Phase II, achieving arbitrary ✏ accuracy

Given b⇢ and b� from the Phase I of our algorithm. Under the ⌦(1) separation assumptions, we refine
the estimation to achieve arbitrary ✏ accuracy in Phase II. In this section, we verify the steps of
Algorithm 2, and show the correctness of Theorem 2.2.

4.1 Construct an anchor partition

Imagine that we have a way to group the M words in the vocabulary into a new vocabulary with a
constant number of superwords, and similarly define marginal vector ⇢A and separation vector �A

over the superwords. The new probability matrix (of constant size) corresponds to we sum over the
rows/columns of the matrix B according to the grouping. If we group the words in a way such that
�A still has ⌦(1) dictionary separation, then with N = ⌦(M) samples we can estimate the constant-
dimensional vector ⇢A and �A to arbitrary accuracy (as M � 1). Note that accurate estimates of ⇢A
and �A defined over the superwords give us crude “global information” about the true ⇢ and �. Now
sum the empirical BN over the rows accordingly, and leave the columns intact, it is easy to recognize
that the expected factorization is given by ⇢A⇢> + �A�>. Therefore, given accurate ⇢A and �A,
refining b⇢ and b� is as simple as solving a least square problem.

We formalize this argument and introduce the definition of anchor partition below.
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Definition 4.1 (Anchor partition). Consider a partition of the vocabulary into (A, Ac). denote ⇢
A

=
P

i2A ⇢i and �
A

=
P

i2A �i. We call it an anchor partition if for some constant CA = O(1),

cond

✓

⇢
A

, �
A

1 � ⇢
A

, ��
A

�◆

 CA. (25)

In this section, we show that if the dictionary separation k�k
1

= ⌦(1), the estimator b� obtained in
Phase I with constant `

1

accuracy contains enough information for us to construct an anchor partition.
First note that with ⌦(1) separation, it is feasible to find a pair of anchor partition. The next

lemma state a su�cient condition for constructing an anchor partition.

Lemma 4.2 (Su�cient condition for constructing an anchor partition). Consider a set of words I,
let �

I

be the vector of � restricted to the entries in I. Suppose that for some constant C = ⌦(1), we
have

k�
I

k
1

� Ck�k
1

, (26)

and suppose that for some constant C 0  1

3

C, we can estimate �
I

up to precision:

kb�
I

� �
I

k
1

 C 0k�
I

k
1

. (27)

Denote bA = {i 2 I : b�i > 0}. We have that ( bA, M\ bA) forms an anchor partition defined in 4.1.

Consider the heaviest bin. If W
log

= ⌦(1) and k�
log

k
1

= ⌦(1), then Lemma 3.3 shows that we
can estimate the portion of � restricted to the heaviest bin to constant `

1

norm accuracy, and then
Lemma 4.2 above shows how to find an anchor partition with set A as a subset of bI

log

.
If either W

log

= o(1) or k�
log

k
1

= o(1), there must be at least a constant fraction of marginal

probabilities as well as a constant fraction of separation located in the moderate empirical bins (bIk’s).
Recall that we can always ignore the lightest bin. If this is the case, in the following we show how to
construct an anchor partition using the moderate empirical bins.

Definition 4.3 (Good bin). Denote the sum of dictionary separation restricted to the “good words”(defined
in (12)) bLk by:

Sk =
X

i2 b
Lk

|�i|, for k = 0, . . . , log log(M). (28)

Note that equivalently we can write Sk = ke�kk1.
We call an empirical bin bIk to be a “good bin” if for some fixed constant C

1

, C
2

= ⌦(1) it satisfies
the following two conditions:

1. the marginal probability of the bin Wk � C
1

e�k.

2. the ratio between the separation and the marginal probability of the bin satisfies Sk
2Wk

� C
2

.

The next Lemma shows that Phase I algorithm provides a good estimate of the separation restricted
to the good bins with high probability.

Lemma 4.4 (Estimate the separation restricted to the k-th good bin). Consider the k-th empirical
bin bIk with Mk words. If it is a “good bin”, then with high probability, the estimate for the separation
vector � restricted to the k-th empirical bin b�b

Ik
= vk given in Lemma 3.6, up to accuracy:

kb�b
Ik

� e�kk1  1p
d
0

k�b
Ik

k
1

. (29)
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Let G ✓ {1, . . . , log log(M)} denote the set of all the “good bins”. Next, we show that there are
many good bins when the dictionary separation is large.

Lemma 4.5 (Most words fall in “good bins” with high probability ). Assume that k�b
I

log

k
1

< 1

2

k�k
1

.

Fix constants C
1

= C
2

= 1

24

k�k
1

. Note that C
1

= C
2

= ⌦(1) by well separation Assumption.
With high probability, we can bound the total marginal probability mass in the “good bins” as:

X

k2G

Wk � k�k
1

12
. (30)

By definition this implies a bound of total separation in the good words in the good bins:

X

i2 e
Lk,k2G

|�i| =
X

k2G

Sk � 2C
2

X

k2G

Wk � 1

24
(k�k

1

)2 = ⌦(1). (31)

Lemma 4.5 together with Lemma 4.4 suggest that we can focus on the estimation of separation
vector restricted to the “good words” in the “good bins”, namely e�b

Ik
for all k 2 G. In particular,

set I = [k2G
bLk in Lemma 4.2. By Lemma 4.5 we know the separation contained in I is at least

P

k2G Sk = Ck�k
1

; moreover by Lemma 4.4, with linear number of samples (large d
0

) we can estimate
�

I

up to constant `
1

accuracy. Therefore we can construct a valid anchor partition (A, M\A) by
setting:

A = {b�i > 0 : k 2 G}.

Ideally, we need to restrict to the “good words” and set the anchor partition to be {i 2 eLk, b�i >
0 : k 2 G}. However, empirically we do not know which are the “good words” instead of spillover from
heavier bins. Luckily, the bound on the total marginal of spillover

P

k W k = O(e�d
0) guarantees that

even if we mis-classify all the spillover words, it does not ruin the separation in A constructed above.

4.2 Estimate the anchor matrix

Now consider grouping the words into two superwords according to the anchor partition we constructed.

We define the 2 ⇥ 2 matrix D
A

=



⇢
A

, �
A

1 � ⇢
A

, ��
A

�

to be the anchor matrix.

To estimate the anchor matrix, we just need to accurately estimate two scalar variables ⇢
A

and
�

A

. Apply the standard concentration bound, we can argue that with high probability,

k


P

i2A,j2A[BN ]i,j
P

i2A,j2Ac [BN ]i,j
P

i2Ac,j2A[BN ]i,j
P

i2Ac,j2Ac [BN ]i,j

�

� D
A

D>

A

k < O(
1p
N

)

Moreover we have that |�
A

| = ⌦(1) since (A, Ac) is an anchor partition. Therefore we can estimate
⇢
A

and �
A

to accuracy 1

p

N
, and when N = ⌦(M) and M is asymptotically large, we can essentially

obtain a close to exact D
A

.

4.3 Use anchor matrix to estimate dictionary

Now given an anchor partition of the vocabulary (A, Ac), and given the exact anchor matrix D
A

which
has ⌦(1) condition number, refining the estimation of ⇢i and �i for each i is very easy and achieves
optimal rate.
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Lemma 4.6 (Estimate ⇢ and � with accuracy in `
2

distance). We have that with probability at least
1 � �,

kb⇢ � ⇢k <
p

�/N, kb� � �k <
p

�/N.

Corollary 4.7 (Estimate ⇢ and � in `
1

distance). With large probability we can estimate ⇢ and � in
`
1

distance:

kb⇢ � ⇢k
1

<

r

M�

N
, kb� � �k

1

<

r

M

N
.

5 Sample complexity lower bounds for estimation VS testing

5.1 Lower bound for estimating probabilities

We reduce the estimation problem to the community detection for a specific set of model parameters.
Consider the following topic model with equal mixing weights, i.e. w = wc = 1/2. For some

constant C
�

= ⌦(1), the two word distributions are given by:

p =



1 + C
�

M
, . . . ,

1 + C
�

M
,
1 � C

�

M
, . . . ,

1 � C
�

M

�

,

q =



1 � C
�

M
, . . . ,

1 � C
�

M
,
1 + C

�

M
, . . . ,

1 + C
�

M

�

.

The expectation of the sum of samples is given by

E[BN ] = N
1

2
(pp> + qq>) =

N

M2



1 + C2

�

1 � C2

�

1 � C2

�

1 + C2

�

�

.

Note that the expected row sum is in the order of ⌦( N
M ). When N is small, with high probability the

entries of the empirical sum BN only take value either 0 or 1, and BN approximately corresponds to
a SBM (G(M, a/M, b/M)) with parameter a = N

M (1 + C2

�

) and b = N
M (1 � C2

�

).
If the number of sample document is large enough for any algorithm to estimating the dictionary

vector p and q up to `
1

accuracy ✏ for a small constant ✏, it can then be used to achieve partial recovery
in the corresponding SBM, namely correctly classify a � proportion of all the nodes for some constant
� = ✏

C
�

.

According to Zhang & Zhou [52], there is a universal constant C > 0 such that if (a� b)2/(a+ b) <
c log(1/�), then there is no algorithm that can recover a �-correct partition in expectation. This
suggests that a necessary condition for us to learn the distributions is that

(2(N/M)C2

�

)2

2(N/M)
� c log(C

�

/✏),

namely (N/M) � c log(C
�

/✏)/2C4

�

. In the well separated regime, this means that the sample com-
plexity is at least linear in the vocabulary size M .

Note that this lower bound is in a sense a worst case constructed with a particular distribution of
p and q, and for other choices of p and q it is possible that the sample complexity can be much lower
than that ⌦(M).
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5.2 Lower bound for testing property of HMMs

In this section, we analyze the information theoretical lower bound to achieve the task of testing
whether a sequence of observations is indeed generated by a 2-state HMM. This problem is closely
related to the problem of, in our general setup in the main text, testing whether the underlying
probability matrix of the observed sample counts is of rank 1 or rank 2. Note that in the context of
HMM this would be a stronger lower bound, since we permit an estimator to have more information
given the sequence of consecutive observations, instead of merely bigram counts.

Theorem 5.1 (Theorem 1.6 restated). Consider a sequence of N observations from a HMM with two
states {+, �} and emission distributions p, q supported on M elements. For asymptotically large M ,
using a sequence of N = O(M) observations, it is information theoretically impossible to distinguish
the case that the two emission distributions are well separated, i.e. ||p � q||

1

� 1/2, from the case that
both p and q are uniform distribution over [M ], namely a degenerate HMM of rank 1.

In order to derive a lower bound for the sample complexity, it su�ces to show that given a sequence
of N consecutive observed words, for N = o(M), one can not distinguish whether it is generated
by a random instance from a class of 2-state HMMs (Definition 1.4) with well-separated emission
distribution p and q, or the sequence is simply N i.i.d. samples from the uniform distribution over
M, namely a degenerate HMM with p = q.

We shall focus on a class of well-separated HMMs parameterized as below: a symmetric transition

matrix T =



1 � t, t
t, 1 � t

�

, where we set the transition probability to t = 1/4; the initial state

distribution is ⇡p = ⇡q = 1/2 over the two states sp and sq; the corresponding emission distribution
p and q are uniform over two disjoint subsets of the vocabulary, A and M\A, separately. Moreover,
we treat the set A as a random variable, which can be any of the

�

M
M/2

�

subset of the vocabulary of

size M/2, which equal probability 1/
�

M
M/2

�

. Note that there is a one to one mapping between the set
A and an instance in the class of well-separated HMM.

Now consider a random sequence of N words GN
1

= [g
1

, . . . , gN ] 2 MN . If this sequence is
generated by an instance of 2-state HMM denoted by A, the joint probability of (GN

1

, A) is given by:

Pr
2

(GN
1

, A) = Pr
2

(GN
1

|A)Pr
2

(A) = Pr
2

(GN
1

|A)
1

�

M
M/2

�

(32)

Moreover, given A, since the support of p and q are disjoint over A and M\A by our assumption, we
can perfectly infer about the sequence of hidden states SN

1

(GN
1

, A) = [s
1

, . . . , sN ] 2 {sp, sq}N simply
by the rule si = sp if gi 2 A and si = sq otherwise. Thus we have:

Pr
2

(GN
1

|A) = Pr
2

(GN
1

, SN
1

|A) =
1/2

M/2

M
Y

i=2

(1 � t)1[si = si�1

] + t1[si 6= si�1

]

M/2
. (33)

On the other hand, if the sequence GN
1

is simply i.i.d. samples from uniform distribution over M,
its probability is given by

Pr
1

(GN
1

) =
1

MN
. (34)

We further define a joint distribution rule Pr
1

(GN
1

, A) such that the marginal probability agrees with
Pr

1

(GN
1

). In particular, we define:

Pr
1

(GN
1

, A) = Pr
1

(A|GN
1

)Pr
1

(GN
1

) ⌘ Pr
2

(GN
1

|A)
P

B2( M
M/2)

Pr
2

(GN
1

|B)
Pr

1

(GN
1

), (35)
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where we define the conditional probability Pr
1

(A|GN
1

) using the properties of the 2-state HMM class.
The main idea of the proof to Theorem 5.1 is to show that for N = o(M), the total variation

distance between Pr
1

and Pr
2

, is small. It follows immediately from the connection between the
error bound of hypothesis testing and total variation distance between two probability rules, that if
TV (Pr

1

(GN
1

), Pr
2

(GN
1

)) is too small we are not able to test which probability rule the random sequence
GN

1

is generated according to.
The detailed proofs are provided in Appendix D.
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