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Statistical Learning 

✦  Given data, infer about the underlying rule θ 
 (Estimation, approximation, property testing, optimization of  f(θ) )  

✓ X(✓)
Data generation 

Learning 

✦  Exploit our prior for structure of the underlying θ  
         to design fast algorithm that uses as few as possible data X  
         to achieve the target accuracy in learning θ 

Computation Complexity Sample Complexity 



3 

✓

Hidden 

Observed 

Mixture Models 

Data: a mixture of unlabeled sub-populations : a “Shallow” network 
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Examples of Mixture Models 

Gaussian Mixtures (GMMs) 

Cluster 

data points in space 

Topic Models  (Bag of Words) 

Topic 

words  
in each document 

✓

✓
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Hidden Markov Models (HMM) 

Current state 

 Past, current, future  
 observations 

✓

Examples of Mixture Models 

Super-Resolution  

Source 

Complex sinusoids 
✓
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H 2 {1, . . . ,K}

X = (X1, X2, . . . , XM ) 2 X

✓

✓

Samples Hidden variable 

Observed variables 

✦  Given N i.i.d. samples of observable variables, estimate the model parameters ���b✓ � ✓
���  ✏

b✓

= ( #mixture components,   mixing weights,    conditional probabilities ) 

✦  Marginal distribution of the observables is a superposition of simple distributions 

Pr✓(X) =
KX

k=1

Pr✓(H = k)| {z } ·Pr✓(X|H = k)| {z }

Learning Mixture Models 
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Challenges in Learning Mixture Models 1 

Pr✓(X) =
P

k Pr✓(H = k) Pr✓(X|H = k)

✦  Likelihood function is non-convex in model parameters 

MLE is computationally intractable       

EM heuristics lack performance guarantee, get stuck at local optimums 
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✓ X(✓)

A⌦B ⌦ C = M

N = ∞ 

Mixture of rank-one matrices/tensors 

Easy inverse 
problems 

Compute statistics: 
e.g. Moments,  
Marginal probability 

Spectral decomposition 
to separate the mixtures 

✦  Moment matching method have suboptimal sample complexity  

 Spectral algorithms can only handle simple models 

Challenges in Learning Mixture Models 2 
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✓ X(✓)

A⌦B ⌦ C = M

N finite 

Easy inverse 
problems 

Spectral decomposition 

Compute statistics 

✦  Moment matching method have suboptimal sample complexity  

 Spectral algorithms can only handle simple models 

Challenges in Learning Mixture Models 2 
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bA⌦ bB ⌦ bC = cM⇡

b✓

✓ X(✓)

A⌦B ⌦ C = M

N finite 

Easy inverse 
problems 

Spectral decomposition 

Compute statistics 

✦  Moment matching method have suboptimal sample complexity  

 Spectral algorithms can only handle simple models 

PCA, CCA, Spectral clustering,  Subspace system ID,… all fit into this paradigm 

Challenges in Learning Mixture Models 2 
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Challenges in Learning Mixture Models 3 

✦  There are “hard” mixture models, which have sample complexity  
lower bound that scales exponentially with model dimensions 

Good instance Bad instance 
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Our Contribution 

Part 1:  It is possible to learn with min-max optimal sample complexity 
              by carefully implementing spectral algorithms. 

Part 2:  New algorithms for some “hard” mixture models,   
   analysis to show there are only a few “hard instances” , 
   and our algorithms efficiently learn all other instances. 

Part 3:  New randomized algorithm for a “hard” mixture model,  
   efficiently learn any instance with high probability. 

Can we have statistical and computational efficient learning algorithms? 
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PART 1  
Achieve optimal sample complexity with fast computation 
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PART 1  
Achieve optimal sample complexity with fast computation 

Estimate low rank probability matrices with linear sample complexity 
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Setup 

Probability Matrix  B 2 RM⇥M
+

(distribution over         outcomes) M2 ( freq counts over        outcomes) 

X✓

M2

        i.i.d draws N

.18! .14! .08! .07! .07!

.14! .29! .09! .07! .10!

.08! .09! .05! .40! .04!

.08! .07! .04! .04! .04!

.07! .10! .04! .05! .05!

 is of low rank R B

5! 3! 2! 1! 1!

3! 4! 1! 0! 1!

2! 2! 1! 0! 1!

2! 1! 0! 1! 0!

1! 2! 1! 0! 0!

M = 5

bBGoal:  find a rank R         such that  k bB � Bk1  ✏

N = 20

B = PWP>

.40!

.20!

.15!

.15!

.10!

.15!

.40!

.15!

.10!

.20!

.4! .1!

.1! .4!

B P W

B =

1

N
Poisson(NB)
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Connection to mixture models 

joint distribution of word pairs B

distribution of consecutive outputs B

Topic model 

HMM 

 
empirical counts                 find low rank       close to  B bB B

Extract parameters estimates N  data samples 
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MLE is non-convex optimization L   Let’s try something “spectral” J 

Sub-optimal Attempt 

Probability Matrix  B 2 RM⇥M
+         i.i.d. samples N

 is of low rank R B

X✓

B = PWP> B =

1

N
Poisson(NB)
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Sub-optimal Attempt 

Probability Matrix  B 2 RM⇥M
+

X✓

✦  Set         to be the rank R truncated SVD of  bB

✦  To achieve accuracy                               need                     k bB � Bk1  ✏ N = ⌦(M2
logM)

✦  Small data in practice ! 
      Word distribution in language has fat tail. 
      More sample documents       , larger the vocabulary size MN

✦  Not sample efficient!   Hopefully  N = ⌦(M)

        i.i.d. samples N

B =

1

N
Poisson(NB)

B ! B, as N ! 1

B

 is of low rank R B B = PWP>
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Main Result 

 
 
 
 
 
 
 
 
 
 
 
 
 

✦  Our upper bound algorithm:    

✓  Rank R estimate        with accuracy 

✓  Using                                                     number of sample draws 

✓  Runtime  

bB k bB � Bk1  ✏

O(M3)

Lead to improved spectral algorithms for learning 

“Recovering Structured Probability Matrices “   H, S. Kakade, W. Kong, G. Valiant  

Testing property is no easier than estimating ?! 

✦  We prove (strong) lower bound:  

✓  Need a sequence of                   observations to test whether  

the sequence is i.i.d. of unif (M) or generated by a 2-state HMM  

⌦(M)

N = O

✓
max(

MR2

✏40
,
MR

✏2
)

◆
8✏ > 0
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We capitalize the idea of community detection in stochastic block model. 
SBM is a special case of our formulation, with homogeneous nodes. 

 
 

Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

p qB B

.03!

.03!

.03!

.30!

.30!

.30!

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

generate 
estimate 
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Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

 Regularize Truncated SVD [Le, Levina, Vershynin] 

 remove heavy row/column from B,  run rank-2 SVD on the remaining graph 

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

 
 
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

p qB B

.03!

.03!

.03!

.30!

.30!

.30!

generate 
estimate 

We capitalize the idea of community detection in stochastic block model. 
SBM is a special case of our formulation, with homogeneous nodes. 
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Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

Key Challenge:  
The general setup has heterogeneous nodes/ marginal probabilities  

 
 

Probability matrix 
Sample counts M ⇥M matrix 

B = Poisson(NB)
B = PWP>

 Regularize Truncated SVD [Le, Levina, Vershynin] 

 remove heavy row/column from B,  run rank-2 SVD on the remaining graph 

We capitalize the idea of community detection in stochastic block model. 
SBM is a special case of our formulation, with homogeneous nodes. 
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Algorithmic Idea 1, Binning 

Key Challenges: 
ü  Binning is not exact, we need to deal with spillover ! 
ü  We need to piece together estimates over bins ! 

Sort and group nodes according to the empirical marginal probability, 
divide the matrix to blocks, then apply regularized t-SVD to each block 

 
 
 

 
 

 
 

1.  Estimate non-uniform marginal  

2.  Bin M nodes according to  

3.  Regularized t-SVD  

       in each  bin × bin block of 

Phase 1 
b⇢

b⇢i

B
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Algorithmic Idea 2, Refinement 

The coarse estimation from Phase 1 gives some global information 
Make use of that to do local refinement for each row / column 

 
 
 

 
 

 
 

1.  Refine the estimate for each node 
use linear regression 

2.  Achieve sample complexity 
                             minmax optimal N = O(M/✏2)

Phase 2 
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PART 2 
non worst-case analysis for spectral algorithms 
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PART 2 
non worst-case analysis for spectral algorithms 

We study GMMs and HMMs for which there exist exponential sample 
complexity lower bound for worst case instances. 

 

Worst cases are rare, and we can handle “non-worst-cases” efficiently 
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Setup 

 Model Parameters:     weights          means           covariance matrices wi µ(i) ⌃(i)

data points in     -dimensional space n

x = N (µ(i)
,⌃(i)), i ⇠ wi

Cluster 

M-dim data points 

✓

[k]

x 2 Rn

mixture of      multivariate Gaussians k

Unsupervised clustering;  customer classification; speaker recognition; object tracking…  
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✓  Mean vectors are well-separated 

 Pair wise clustering [Dasgupta]…[Vempala&Wang] 

✦  General case  
 Moment matching method  [Moitra&Valiant] [Belkin&Sinha] 

 

✓  Mean vectors of spherical Gaussians are linearly independent 

 Moments tensor decomposition [Hsu&Kakade]  

✦  With restrictive assumptions on model parameters 

Poly(n, eO(k)k)

Poly(n, k)

Prior Works 

Poly(n, k)
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Worst case lower bound 

Can we learn every  GMM instance to target accuracy  

in poly runtime and using poly samples? 

 No! 

Exponential dependence in k for worst cases. [Moitra&Valiant] 

Can we learn most GMM instances with poly algorithm? 

Yes!  
 without restrictive assumptions on model parameters 
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Escape from the worst cases 
Smoothed Analysis Framework 

Hope With high probability over nature’s perturbation, any arbitrary instance 
              escapes from the degenerate cases, and becomes well conditioned. 
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Escape from the worst cases 
Smoothed Analysis Framework 

For any matrix A 2 Rm⇥n
, and m � 3n.

Perturbation E i.i.d. Gaussian N (0, ✏2).

�n(A+ E) � ✏
p
m
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Escape from the worst cases 
Smoothed Analysis Framework 

For an arbitrary instance          in the parameter space 

Nature perturbs the parameters with a small amount (ε) of noise  
 
Observe data generated by       , algorithm estimate       w.h.p. 
 

✓

e✓e✓
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!

✦  Our algorithm learns the GMM parameters up to target accuracy  

✓  With fully polynomial time and sample complexity 

✓  Assumption: data in high enough dimension  

✓  Under smoothed analysis: works with negligible failure probability 

n = ⌦(k2)

Poly(n, k, 1/✏)

Main Results 

“Learning Mixture of Gaussians in High dimensions”   R. Ge, H, S. Kakade (STOC 2015) 
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Algorithmic Ideas 

✦  Moment tensors are structured linear projections of desired low rank tensors 

✦  Delicate algorithm to invert the structured linear projections 

M4 = F4(X4)

M6 = F6(X6)

X4 =
kX

i=1

⌃(i) ⌦ ⌃(i),

X6 =
kX

i=1

⌃(i) ⌦ ⌃(i) ⌦ ⌃(i).

Structured  
linear projection 

Method of moments:  match 4-th and 6-th order moments                    
Key challenge:  Moment tensors are not of low rank, but they have special structures 

M4 M6

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

 
 
 
 
!
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Algorithmic Ideas 

Method of moments:  match 4-th and 6-th order moments                    
Key challenge:  Moment tensors are not of low rank, but they have special structures 

M4 M6

Why “high dimension n” & “smoothed analysis” help us to learn? 
✓  We have many moment matching constraints with only low order moments 

   # free parameters                       <       #6-th moments 

✓  The randomness in nature’s perturbation makes matrices/tensors well-conditioned 

    

⌦(kn2) ⌦(n6)

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

 
 
 
 
!
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Transition probability matrix: 

Observation probabilities: 

HMM Setup 

Hidden state 

Observation 

N = 2n+1 window size  

[k]

[d]

ht

xt

ht�1

xt�1 xt+1

ht+1 ht+n

xt+nxt�n

ht�n

Q 2 Rk⇥k

O 2 Rd⇥k

   Given length-N output sequences, how to recover                          

   Our focus: How large the window size N needs to be? 
✓ = (Q,O)
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✦  HMM is not efficiently PAC learnable 
     Construct an instance with reduction to parity of noise  

Required window size                       ,   Algorithm Complexity is  

[Abe,Warmuth] [Kearns]  

⌦(dk)

Hidden state Observation N = 2n+1 window size  [k] [d]

N = ⌦(k)

Hardness Results 
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✦  Excluding a measure 0 set in the parameter space of  
 
for almost all HMM instances, the required window size is  

 

✦  Spectral algorithm achieves sample complexity and runtime both  

N = ⇥(logd k)

poly(d, k)

✓ = (Q,O)

Our Results 

“Minimal Realization Problems for Hidden Markov Models”  
  H, R. Ge, S. Kakade, M. Dahleh  (IEEE Transactions on Signal Processing, 2016)  
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PART 3 
Randomized algorithm to tackle worst case lower bound 
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PART 3 
Randomized algorithm to tackle worst case lower bound 

Our algorithm for super-resolution has quadratic complexity 
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Setup 

✓ X(✓)

* =

How to recover the point sources with coarse measurement of the signal? 

ü  small number of Fourier measurements  
ü  at frequencies much lower than Nyquist  

Band-limited  

Low pass blurring of high resolution but simple images 
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ü  Recover point sources  (a mixture of k points in n-dimensional space)  

             Problem Formulation 

kbµ(j) � µ(j)k2  ✏, 8j 2 [k]ü  Achieve target accuracy 

� = minj 6=j0 kµ(j) � µ(j0)k2 define minimum separation 

ksk1  cuto↵ freq

bounded noise |z(s)|  ✏z, 8s

ü  Measure by band-limited and noisy Fourier transformation 

ef(s) =
Pk

j=1 wjei⇡<µ(j),s> + z(s)

✓(t) =
Pk

j=1 wj�µ(j)
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Prior Works  

✦  1-dimensional  
✓  Take uniform measurements on the grid 

 

✓  SDP algorithm with cut-off frequency 
  

✓  Lower bound result 
 

✓  One can use                      random measurements to recover          measurements 

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s) � = minj 6=j0 kµ(j) � µ(j0)k2

N = ⌦( 1
� )

k log(k) 2N
[Tang, Bhaskar, Shah, Recht] 

[Candes, Fernandez-Granda] 

s 2 {�N, . . . ,�1, 0, 1, . . . , N}

[Moitra] N > C
�

µ(j)

✦  n-dimensional 
✓  Multi-dimensional grid 

✓  Algorithm complexity 

µ(j)

s 2 {�N, . . . ,�1, 0, 1, . . . , N}n

O

✓
poly(k,

1

�
)

◆n
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!

✦  Our randomized algorithm achieves stable recovery 

✓  uses a number of                              Fourier measurements  

✓  cutoff freq of the measurements bounded by 

✓  algorithm runtime  

✓  algorithm works with negligible failure probability 

O(1/�)

Main Result 

“Super-Resolution off the Grid”   H, S. Kakade (NIPS 2015) 

eO((k + n)2)

eO((k + n)3)

cuto↵ freq measurements runtime

SDP Cn
�1

( 1

�1
)n poly(( 1

�1
)n, k)

Ours log(kn)
�

(k log(k) + n)2 (k log(k) + n)3
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      Algorithmic Idea 

ü  Skip intermediate step of recovering                  measurements on the hyper-grid 

      directly work with a small number of random measurements 

ü  Take Fourier measurements at random frequencies 
ü  Create structure so the measurements can be arranged as a low rank tensor 

s
F

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

F = VS0 ⌦ VS0 ⌦ (V2Dw),

(Vandermonde Matrix  
with complex nodes) 

(Rank-k 3-way tensor) 

VS =

2

66664

ei⇡<µ(1),s(1)> . . . ei⇡<µ(k),s(1)>

ei⇡<µ(1),s(2)> . . . ei⇡<µ(k),s(2)>

... . . .
...

ei⇡<µ(1),s(m)> . . . ei⇡<µ(k),s(m)>

3

77775
.

n⇥ n⇥ 2

n⇥ k

⌦(Nn)
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      Algorithmic Idea 

²     Why we do not contradict the lower bound? 
 
 
 
ü    If we design a fixed grid of  frequency to take measurements  
        there always exists model instances such that the deterministic grid fails 

ü   We pick the locations of frequencies at random.  
   for any model instance, the random algo works with high probability 

vs eO(k2 + n2) O
⇣
poly(k,

1

�
)
⌘n
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✦  Spectral methods  are powerful tools for learning mixture models. 

✦  It’s possible to learn with optimal sample complexity  
with carefully implemented spectral algorithm 

✦  We can go beyond worst case analysis by exploiting the 
randomness in the analysis / algorithm. 

Conclusion 
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✦  Addressing the robustness issue of spectral algorithms 

✦  Extend the algorithmic and analysis techniques to other learning problems 

Future work 
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✦  “Learning Mixture of Gaussians in High dimensions”  
  R. Ge, H, S. Kakade (STOC 2015) 
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Algorithmic idea 

A = Pr
�
x1, x2, . . . , xn

��
h0

�

B = Pr
�
x�1, x�2, . . . , x�n

��
h0

�

C = Pr
�
x0, h0

�

1.          is a  low rank tensor of rank k M

2.  Extract              from tensor factors  A B  Q,O

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

Key lemma:  
How large window size needs to be, so that we have unique tensor decomp 

2 Rdn⇥dn⇥d

M = Pr
�
(xn�1, . . . , x�1), x0, (x1, . . . , xn)

�

A = (O � (O � (O � . . . (O �O| {z }
n

Q) . . . )Q)Q)Q| {z }
n

,

B = (O � (O � (O � . . . (O �O| {z }
n

eQ) . . . ) eQ) eQ) eQ| {z }
n

,

C = Odiag(⇡)

Our careful generic analysis: 
If                               , worst cases all lie in a measure 0 setN = ⇥(logd k)


