Efficient Algorithms for Learning Mixture Models

Thesis defense 2016 May 27
Qingqging Huang

Thesis Committee;
Munther Dahleh

Sham Kakade
Pablo Parrilo



Statistical Learning

Data generation
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+ Given data, infer about the underlying rule 6
(Estimation, approximation, property testing, optimization of f(0) )

+ Exploit our prior for structure of the underlying 0
to design fast algorithm that uses as few as possible data X

to achieve lhe target accuracy in Iearnlng 0
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Mixture Models
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Examples of Mixture Models

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominantones. Our perception of the world
around us is based essentially on the

eye, cell, optical
nerve,image

following the
to the various

demonstrate that the message abol
image falling on the retina undergoe
wise analysisin a system of nerve cel
stored in columns. In this system each
hasits specific function and is responsib/d
a specific detail in the pattern of the retinal
image.

Chinais forecasting a trade surplus of $90bn
(£51bn)to $100bnthis year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
Ot S5750bn,

China, trade,
urplus, commerce,
exports, imports, US,
uan, bank, domestic
foreign, increase,

trade, value

the US wants the yuan to be allowed
freely. However, Beijing has made it
it willtake its time andtread carefully bé
allowingthe yuan to rise further in value.

Gaussian Mixtures (GMMs)

Cluster
v,

data points in space

Topic Models (Bag of Words)

Topic
6

words
in each document



Examples of Mixture Models

(X ez X Vo Xa s X \posisg X5 ) Hidden Markov Models (HMM)
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Learning Mixture Models

9 Samples Hidden variable H € {1,...,K}
_——

Observed variables X = (X1, Xo,..., Xy) € X

+ Marginal distribution of the observables is a superposition of simple distributions

——— —— —

(9 = ( #mixture components, mixing weights, conditional probabilities)

Pro(X) =) Prg(H =k)-Prg(X|H = k)
k=1

S

+ Given N i.i.d. samples of observable variables, estimate the model parameters @
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Challenges in Learning Mixture Models 1

Pro(X) = 3, Pro(H = k) Pro(X|H = k)
+ Likelihood function is non-convex in model parameters

MLE is computationally intractable
EM heuristics lack performance guarantee, get stuck at local optimums

likelihood

N\

MLE
EM

/N

V




Challenges in Learning Mixture Models 2

+ Moment matching method have suboptimal sample complexity
Spectral algorithms can only handle simple models

0 X(0) N=o

Compute statistics:
Easy inverse e.g. Moments,

problems Marginal probability

ARBC =M

Spectral decomposition . .
P P Mixture of rank-one matrices/tensors

to separate the mixtures



Challenges in Learning Mixture Models 2

+ Moment matching method have suboptimal sample complexity
Spectral algorithms can only handle simple models

0 X(0#) Nfinite

Easy inverse Compute statistics

problems

ARBRC =M

Spectral decomposition



Challenges in Learning Mixture Models 2

+ Moment matching method have suboptimal sample complexity
Spectral algorithms can only handle simple models

0 X(0#) Nfinite

l Compute statistics

NN

— A®BC=M
2
ARXRBR(C =M

Easy inverse ’N
problems 9

Spectral decomposition

PCA, CCA, Spectral clustering, Subspace system ID,... all fit into this paradigm

10



Challenges in Learning Mixture Models 3

+ There are "hard” mixture models, which have sample complexity
lower bound that scales exponentially with model dimensions
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Our Contribution

Can we have statistical and computational efficient learning algorithms?

Part 1: Itis possible to learn with min-max optimal sample complexity
by carefully implementing spectral algorithmes.

Part 2: New algorithms for some “hard” mixture models,
analysis to show there are only a few “hard instances”,
and our algorithms efficiently learn all other instances.

Part 3: New randomized algorithm for a “hard” mixture model,
efficiently learn any instance with high probability.

12



PART 1

Achieve optimal sample complexity with fast computation

13



PART 1

Achieve optimal sample complexity with fast computation

Estimate low rank probability matrices with linear sample complexity

14



Setup

0 = X

Probability Matrix B € R *M N i.i.ddraws
(distribution over M2 outcomes) (freq counts over M “outcomes)

. T |
B isoflowrankR B = PWP B = NPOlsson(NIB%)

B P W

18].14].08].07].07] [40[15] [ 4] 1 Mor5 |5]3]2]1]
14| 20| 00|07 10| |[20[40] [ 1] 4 N—90 |a|a]1]0]
08|.00].05|.40].04] [.15[.15 > 2101
08|.07].04|.04] 04| [.15[10 >[1]0]1]0
07].10].04|.05] .05 [.10].20 121 o]0

Goal: findarankR B such that H]§ — Bk@g €

15



Connection to mixture models

Topic model

B joint distribution of word pairs

M words in vocabulary

R topics

HMM

B distribution of consecutive outputs
output, output;,,

M output alphabet size
R hidden states

N data samples Extract parameters estimates

¥ )

empirical counts B —> find low rank B closeto B

16



Sub-optimal Attempt

0 : X
Probability Matrix B € R_]‘fXM N iid.samples
1
B isof lowrankR B = PWP' B = NPoisson(NIB%)

MLE is non-convex optimization @ Let's try something “spectral” ©

17



Sub-optimal Attempt

0 : X
Probability Matrix B € RfXM N iid.samples
1
B isof lowrankR B = PWP' B = NPoisson(NIB%)

B — B, as N — o0
+ Set B to be the rankR truncated SVD of B
+ To achieve accuracy |IB—B|1 <e need N =Q(M?log M)

+ Not sample efficient! Hopefully N = (M)

+ Small data in practice'!

Word distribution in language has fat tail.
More sample documents [V, larger the vocabulary size M

18



Main Result

+ Our upper bound algorithm:

¢ RankR estimate B with accuracy IB—B|; <e¢ Ve>0

, MR? MR
v Using N=O<maa:( i )) number of sample draws
0

v Runtime O(M?)

Lead to improved spectral algorithms for learning

+ We prove (strong) lower bound:

v Need asequenceof €2(M) observations to test whether

the sequence is i.i.d. of unif (M) or generated by a 2-state HMIM

Testing property is no easier than estimating ?!

“Recovering Structured Probability Matrices “ H, S. Kakade, W. Kong, G. Valiant

19



Algorithmic Idea

We capitalize the idea of community detection in stochastic block model.
SBM is a special case of our formulation, with homogeneous nodes.

M nodes 2 communities
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Expected connection

Adjacency matrix

B=pp' +aqq'
B = Bernoulli(NB)

30| .03

30| .03

301 03| generate
03] |80} “estimate
03| | .30

03| | .30

P q

111100 1]0
111|170 1] 1
o|1(1]01]0
OjO0(O0 |0 |11
1 (11711 1]1
O|1(0]0]| 11
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Algorithmic Idea
We capitalize the idea of community detection in stochastic block model.

SBM is a special case of our formulation, with homogeneous nodes.
Expected connection B =opp' +qq'

M nodes 2 communities : : ,
Adjacency matrix B = Bernoulli(NB)

Regularize Truncated SVD [Le, Levina, Vershynin]
remove heavy row/column from B, run rank-2 SVD on the remaining graph

.09 (.09 |.09 |.02 |.02 |.02 .30 .03 1 1 O O 1 0

.09 (.09 .09 |.02 |.02 |.02 .30 .03 1 1 1 0 1 1

.09 (.09 [.09 |.02 |.02 |.02 .30 .03 generate ‘ 0 1 1 0 1 0

02 |.02 |.02 |.09 |.09 |.09 03| |.30| “astimate | 0| 0[O |0} 1]

.02 (.02 [.02 |.09 |.09 |.09 .03 .30 1 1 1 1 1 1

.02 (.02 .02 .09 [.09 |.09 .03 .30 0 1 O O 1 1
B P q B
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Algorithmic Idea

We capitalize the idea of community detection in stochastic block model.
SBM is a special case of our formulation, with homogeneous nodes.

Expected connection B =pp' +qq"

M nodes 2 communities : :
Adjacency matrix B = Bernoulli(NB)

Regularize Truncated SVD [Le, Levina, Vershynin]
remove heavy row/column from B, run rank-2 SVD on the remaining graph

Probability matrix B = PWP'

M x M matrix
Sample counts B = Poisson(NB)

Key Challenge:
The general setup has heterogeneous nodes/ marginal probabilities

22



Algorithmic Idea 1, Binning

Sort and group nodes according to the empirical marginal probability,
divide the matrix to blocks, then apply reqularized t-SVD to each block

p; large > p; small

Phase 1

Estimate non-uniform marginal p
Bin M nodes according to p;

Regularized t-SVD
in each bin x bin block of B

0; small
Key Challenges: B

v Binning is not exact, we need to deal with spillover!
v We need to piece together estimates over bins !

23



Algorithmic Idea 2, Refinement

The coarse estimation from Phase 1 gives some global information
Make use of that to do local refinement for each row / column

Anchor partition

Phase 2

Refine the estimate for each node
use linear regression

Achieve sample complexity
N = O(M/€e*) minmax optimal

Refinement

24



PART 2

non worst-case analysis for spectral algorithms

25



PART 2

non worst-case analysis for spectral algorithms

We study GMMs and HMMs for which there exist exponential sample
complexity lower bound for worst case instances.

Worst cases are rare, and we can handle “non-worst-cases” efficiently

26



Setup

Cluster [k]
0

M-dim data points = € R"

mixture of k£ multivariate Gaussians =—» data points in 12-dimensional space

Model Parameters: weights w; means p{*) covariance matrices (%)

Unsupervised clustering; customer classification; speaker recognition; object tracking...
27



Prior Works

+ General case
k
Moment matching method [Moitra&Valiant] [Belkin&Sinha] P()ly(n, eO(k) )

+ With restrictive assumptions on model parameters

v Mean vectors are well-separated : '..'
Pair wise clustering [Dasqupta]...[Vempala&Wang] Paly(n, k) R

v Mean vectors of spherical Gaussians are linearly independent o
Moments tensor decomposition [Hsu&Kakade] Pgly(n, k) -

28



Worst case lower bound

Can we learn every GMM instance to target accuracy
in poly runtime and using poly samples?

No!

Exponential dependence in k for worst cases. [Moitra&Valiant]

Can we learn most GMM instances with poly algorithm?

Yes!

without restrictive assumptions on model parameters

29



Smoothed Analysis Framework
Escape from the worst cases

.‘.?S.: bad instances surrounded
by good instances
. .".‘ “‘-.l lllll Taa, .
any instance -‘o’: EXXXX XX
. o Y sunn®

a e-ball around it

2’( X § bad instances must lie in

% low-dim space of measure O

Hope: With high probability over nature’s perturbation, any arbitrary instance
escapes from the degenerate cases, and becomes well conditioned.

30



Smoothed Analysis Framework
Escape from the worst cases

.‘.x.: bad instances surrounded
by good instances

anyinstance  » @ s X XK X XS

a e-ball around it ***

gx X § bad instances must lie in

% low-dim space of measure O

Ran

For any matrix A € , and m > 3n.

Perturbation F i.i.d. Gaussian N (0, €?).
on(A+ E) > ey/m

3
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Smoothed Analysis Framework
Escape from the worst cases

For an arbitrary instance @ inthe parameter space

Nature perturbs the parameters with a small amount (€) of noise

Observe data generated by ] , algorithm estimate 9 w.h.p.

32



Main Results

+ Our algorithm learns the GMM parameters up to target accuracy
v With fully polynomial time and sample complexity Poly(n, k, 1/6)

¢« Assumption: data in high enough dimension ~ n = Q(k?)

v Under smoothed analysis: works with negligible failure probability

“Learning Mixture of Gaussians in High dimensions” R. Ge, H, S. Kakade (STOC 2015)
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Algorithmic Ideas

Method of moments: match 4-th and 6-th order moments M, Msg
Key challenge: Moment tensors are not of low rank, but they have special structures

0 —_— X (0)
§— AwBal ]\}4\ My = Elze’
—— ARbLKCU = - :
2 Mg = E[z&”
AR BC=M
k
X, = (%) Q Z(Z),

; Structured My = Fa(Xy4)
k linear projection Mg = Fg(Xg)

Xg = Z 21 o 2@ g @)
i=1

+ Moment tensors are structured linear projections of desired low rank tensors

+ Delicate algorithm to invert the structured linear projections

34



Algorithmic Ideas

Method of moments: match 4-th and 6-th order moments M, Msg
Key challenge: Moment tensors are not of low rank, but they have special structures

) —— X(0)
§— AieBedl ]\}4\ My = Elze’
—— ARbLKCU = - :
2 Ms = E[z®°]

A®B®C =M

Why “high dimension n” & “smoothed analysis” help us to learn?
v We have many moment matching constraints with only low order moments

# free parameters Q(kn?) < #6-th moments (n®)

v Therandomness in nature’s perturbation makes matrices/tensors well-conditioned

35



HMM Setup

@ @ @ @ @ Hidden state
@ @ @ @ @ Observation
N 2n+1 window size

Transition probability matrix: @ € RF**
Observation probabilities: O € R4xFk

Given length-N output sequences, how to recover § = (@, O)?

Our focus: How large the window size N needs to be?

d

d

36



Hardness Results

Hidden state [k‘] Observation [d] N = 2n+1 window size

+ HMM is not efficiently PAC learnable
Construct an instance with reduction to parity of noise [Abe Warmuth] [Kearns]
Required window size N = (k) , Algorithm Complexity is Q(dk)

37



Our Results

+ Excluding a measure 0 set in the parameter space of 0= (Q,0)

for almost all HMM instances, the required window sizeis N = O(log, k)

+ Spectral algorithm achieves sample complexity and runtime both Eal;‘lf d, k )

“Minimal Realization Problems for Hidden Markov Models”
H, R. Ge, S. Kakade, M. Dahleh (IEEE Transactions on Signal Processing, 2016) 38




PART 3

Randomized algorithm to tackle worst case lower bound

39



PART 3

Randomized algorithm to tackle worst case lower bound

Our algorithm for super-resolution has quadratic complexity

40



Setup

Low pass blurring of high resolution but simple images

9 Band-limited » X(@)

* f\ =

How to recover the point sources with coarse measurement of the signal?

v small number of Fourier measurements
v' at frequencies much lower than Nyquist

41



Problem Formulation

v Recover point sources (a mixture of k points in n-dimensional space)
k
0(t) = > _i—1 w;j0,G)

define minimum separation A = min,;: || — 1G]

v Measure by band-limited and noisy Fourier transformation
fs) = 35 wyeim<n & ye(s)

|s]|co < cutoff freq bounded noise |z(s)| < €., Vs

v Achieve targetaccuracy  ||a() — V)|, < e,V € [k]

L2



Prior Works

k

~ - (5) . : Y
Fls) =D wje ™ s> 4 o(s) A = min, 0 ) — p0];
j=1

+ T1-dimensional u(j)

v Take uniform measurementsonthegrid se {—N,...,—1,0,1,...,N}

v SDP algorithm with cut-off frequency N = Q(%) [Candes, Fernandez-Granda]

v Lowerboundresult N > % [Moitra]

v Onecanuse k log(k) random measurements to recover 2 N measurements
[Tang, Bhaskar, Shah, Recht]

+ n-dimensional u(j)
v Multi-dimensional grid S € {_N7 SN T LN P N}n

v Algorithm complexity 1 '

43



Main Result

+ Ourrandomized algorithm achieves stable recovery

s ) |
v usesanumberof O((k+n Fourier measurements

v cutoff freq of the measurements bounded by O(1/A)

v algorithm runtime 5( (k + ng?’)

v algorithm works with negligible failure probability

A

cutoff freq | measurements runtime
SDP | £» (2)" | poly((Z=)" b
Ours | 2elkn) | (klog(k) +n)2 | (klog(k) +n)3

“Super-Resolution off the Grid” H, S. Kakade (NIPS 2015)

L4



Algorithmic Idea
k .
f(s) =D wie™<m> 4o (s)

j=1
v’ Take Fourier measurements at random frequencies S

v Create structure so the measurements can be arranged as a low rank tensor F’

F=Vs ® Vg & (VoD,,), (Rank-k 3-way tensor)
nxXmnx 2
i 6z'7r<,u(1),s(1)> 6’i7T<,LL(k),S(1)> |
e (D) (2) o (B) (2) ,
> SN L - L L e (Vandermonde Matrix
S with complex nodes)
' ' n X k
6z'7r<,u(1),s("”°)> 6z'7r<,u(k;),s(m)>

v" Skip intermediate step of recovering £2(IN™) measurements on the hyper-grid
directly work with a small number of random measurements
45



Algorithmic Idea

< Why we do not contradict the lower bound?

—~ 1 n
2 2 VS -
O(k* +n*) O(poly(k,A))

v If we design a fixed grid of frequency to take measurements
there always exists model instances such that the deterministic grid fails

v' We pick the locations of frequencies at random.
for any model instance, the random algo works with high probability

L6



Conclusion

+ Spectral methods are powerful tools for learning mixture models.

+ It's possible to learn with optimal sample complexity
with carefully implemented spectral algorithm

+ We can go beyond worst case analysis by exploiting the
randomness in the analysis / algorithm.

L7



Future work

+ Addressing the robustness issue of spectral algorithms

+ Extend the algorithmic and analysis techniques to other learning problems

48
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Algorithmic idea

” c Rd”xd”xd
A©B®C =M
1. M is a low rank tensor of rank k A =Pr(z1,22,...,2,|ho)
C =Pr £E(),h())

J/
~"~

2. Extract @, O from tensor factors AB A=(00(060(006...(000Q)...)Q)Q)C;
00 (06(06...(000Q)...)Q

n

Ny
|
( —~

)Q)Q)Q.
Key lemma: !
How large window size needs to be, so that we have unique tensor decomp

Our careful generic analysis:

f N = O(log, k) , worst cases all lie in a measure 0 set!
57



