
1 

Qingqing Huang 
 

Learning Structured Probability Matrices 
!

Laboratory for  
Information & Decision  
Systems 

2016 February 

Based on joint work with Sham Kakade, Weihao Kong and Greg Valiant. 



2 

Learning 

✓ X(✓)
Data generation 



3 

Learning 

✦  Infer about the underlying rule θ 
 (Estimation, approximation, property testing, optimization of  f(θ) )  

✓ X(✓)
Data generation 

Learning 



4 

Learning 

✦  Infer about the underlying rule θ 
 (Estimation, approximation, property testing, optimization of  f(θ) )  

✓ X(✓)
Data generation 

Learning 

✦  Challenge:           
         Exploit our prior for structure of the underlying θ  
         to design fast algorithm that uses as few as possible data X  
         to achieve the target accuracy in learning θ 



5 

Learning 

✦  Infer about the underlying rule θ 
 (Estimation, approximation, property testing, optimization of  f(θ) )  

✓ X(✓)
Data generation 

Learning 

✦  Challenge:           
         Exploit our prior for structure of the underlying θ  
         to design fast algorithm that uses as few as possible data X  
         to achieve the target accuracy in learning θ 

Computation Complexity Sample Complexity dim(✓)!



6 

Unstructured Probability 

Discrete probability distribution  
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Structured Probability 

Probability Matrix  B 2 RM⇥M
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B = Poisson(NB)
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Structured Probability 
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Connection to Learning Mixture Models 

joint distribution over word pairs B
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            empirical dsitribution                 find low rank       close to  B bB B

Estimate model parameters N  data samples 
Spectral  

Algorithm: 

distribution of past and future outputs 
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Structured Distribution Learning 

Discrete probability  
distribution  

X✓
i.i.d. samples 

counts 

Sample complexity ! Unstructured! Low rank structure !

 Estimation! Linear! ?!
Property !
Testing! Sub-Linear! ?!
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Sub-Optimal Attempt 
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Sub-Optimal Attempt 

MLE is non-convex optimization L         let’s try something intuitive J 

Probability Matrix  B 2 RM⇥M
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Sub-Optimal Attempt 

Probability Matrix  B 2 RM⇥M
+

B = Poisson(NB)

        i.i.d. samples N

 is of rank 2:  B B = ⇢⇢> +��>

X✓

✦  Set         to be the rank 2 truncated SVD of  bB

✦  To achieve accuracy                               need                     k bB � Bk1  ✏ N = ⌦(M2
logM)

✦  Small data in practice! 
      Word distribution in language has fat tail. 
      More sample documents       , larger the vocabulary size MN

✦  Not sample efficient!   Hopefully  N = ⌦(M)
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✦  Our upper bound algorithm:    

✓  Rank-2 estimate        with accuracy 

✓  Using                                 number of samples 

✓  Runtime  

✦  We prove (strong) lower bound:  

✓  Need a sequence of                           observations to test whether  

the sequence is i.i.d. of unif (M) or generated by a 2-state HMM  

Main Results 

bB k bB � Bk1  ✏

N = O(M/✏2)

O(M3)

8✏ > 0

N = ⌦(M)
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Algorithmic Idea 
We capitalize the idea of community detection in sparse random network, 
SBM is a special case of our problem formulation with homogeneous nodes 
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Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

Key Challenge:  
In our general setup, we have heterogeneous nodes/ marginal probabilities  

 
 

M ⇥M matrix B = ⇢⇢> +��> Probability matrix 
Sample counts B = Poisson(NB)

Regularize Truncated SVD:                                                         [Le, Levina, Vershynin] 
 remove heavy row/column from B,  run rank-2 SVD on the remaining graph 

We capitalize the idea of community detection in sparse random network, 
SBM is a special case of our problem formulation with homogeneous nodes 
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Algorithmic Idea 1, Binning 

1.  Estimate non-uniform marginal  

2.  Bin M nodes according to  

3.  Regularized t-SVD  

       in each  bin × bin block of 

Phase 1 
b⇢

b⇢i

B

We group the M nodes according to the empirical marginal probability, 
divide the matrix into blocks, then apply regularized t-SVD to each block 
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Key Challenges: 
ü  Binning is not exact, we need to deal with spillover! 
ü  We need to piece together estimates over bins! 

We group the M nodes according to the empirical marginal probability, 
divide the matrix into blocks, then apply regularized t-SVD to each block 

 
 
 

 
 

 
 

1.  Estimate non-uniform marginal  

2.  Bin M nodes according to  

3.  Regularized t-SVD  

       in each  bin × bin block of 

Phase 1 
b⇢

b⇢i

B

Algorithmic Idea 1, Binning 
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Algorithmic Idea 2, Refinement 

1.  Refine the estimate for each node 
use linear regression 

2.  Achieve sample complexity 
                             minmax optimal N = O(M/✏2)

Phase 2 

The coarse estimation from Phase 1 gives some global information. 
Make use of that to do local refinement for each row / column of B 
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✦  We identify a problem that lies at the core of many learning problems 

✦  Spectral algorithm is not solving for the non-convex MLE, we need 
carefully designed algorithm to improve its statistical efficiency  

✦  Coming soon:    estimation / approximation / property testing  
of structured probability distribution 

Take-Away Message 

✓ X(✓)
Data generation 

Learning 
Structured 


