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Discrete probability distribution N Li.d. samples N ~ Poisson
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Structured Probability

0 X
Probability Matrix B ¢ RY*M N i.i.d.samples
(distribution over M? outcomes) (freq counts over M? outcomes)
B isof lowrank B=pp' +qq' B = Poisson(NB)
18/.14|.08.07 | .07 40| | .15 513|211
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Goal: find rank-2 B suchthat |B — Bl < e

N (4N M) sample complexity: upper/lower bound
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Connection to Learning Mixture Models

topicH=1o0r2
Pr(wordy, words |topic = T7) = op!
Topic .
mopdel document PI‘(WOI‘dl, words [topic = T2) — qu
d, word, e .
L B joint distribution over word pairs
size M vocabulary
state H,=1or?2
| | Pr(outputy, outpth‘state = 5;) = 0;(0Q;)"
HMM
B distribution of past and future outputs
output, output,,,
size M output alphabet
N data samples Estimate model parameters
Spectral ! A
Algorithm:

empirical dsitribution g ==p find low rank B close tog
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Structured Distribution Learning

0

Discrete probability

distribution

X

.I.d. samples
counts

Sample complexity Unstructured Low rank structure
Estimation Linear ?
Prop.erty Sub-Linear ?
Testing
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Sub-Optimal Attempt
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Sub-Optimal Attempt

v, —_— X

Probability Matrix B € R >*M
B isofrank2: B=pp' + AAT

MLE is non-convex optimization ®

N 1i.d. samples

B = Poisson(/NB)

let's try something intuitive ©
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Sub-Optimal Attempt

0 D ———— X
Probability Matrix B € R >*M N i.i.d. samples
B isofrank2: B=pp' + AAT B = Poisson(NB)

+ B = ~Poisson(NB) — B, as N — oo

+ Set B to be the rank 2 truncated SVD of %B

+ To achieve accuracy |IB—B|1 <e need N =Q(M?log M)

+ Not sample efficient! Hopefully N = (M)

+ Small data in practice!

Word distribution in language has fat tail.
More sample documents [V, larger the vocabulary size M
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Main Results
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Main Results

+ Our upper bound algorithm:

¢ Rank-2 estimate B with accuracy |IB=B|;<e¢ Ve>0

¢ Using N =0(M/€e*) number of samples

v Runtime O(M?)

+ We prove (strong) lower bound:

v Need asequenceof N = Q(M) observations to test whether

the sequence is i.i.d. of unif (M) or generated by a 2-state HMIM

Sample complexity Unstructured Low rank structure
Estimation Linear Linear
Propgrty Sub-Linear Linear
Testing
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Algorithmic Idea

We capitalize the idea of community detection in sparse random network,
SBM is a special case of our problem formulation with homogeneous nodes
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Algorithmic Idea

We capitalize the idea of community detection in sparse random network,
SBM is a special case of our problem formulation with homogeneous nodes
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Algorithmic Idea

We capitalize the idea of community detection in sparse random network,
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Algorithmic Idea

We capitalize the idea of community detection in sparse random network,
SBM is a special case of our problem formulation with homogeneous nodes

Expected connection B =pp' +qq"

M nodes 2 communities : .
Adjacency matrix B = Bernoulli(NB)

Regularize Truncated SVD: [Le, Levina, Vershynin]
remove heavy row/column from B, run rank-2 SVD on the remaining graph
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Algorithmic Idea

We capitalize the idea of community detection in sparse random network,
SBM is a special case of our problem formulation with homogeneous nodes

Expected connection B =pp' +qq"

M nodes 2 communities : . ,
Adjacency matrix B = Bernoulli(NB)

Regularize Truncated SVD: [Le, Levina, Vershynin]
remove heavy row/column from B, run rank-2 SVD on the remaining graph

Probability matrix ~ B = pp" + AAT

M x M matrix
Sample counts B = Poisson(NB)

Key Challenge:
In our general setup, we have heterogeneous nodes/ marginal probabilities
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Algorithmic Idea 1, Binning

We group the M nodes according to the empirical marginal probability,
divide the matrix into blocks, then apply reqularized t-SVD to each block

p; large > p; small

Phase 1

Estimate non-uniform marginal p
Bin M nodes according to p;

Regularized t-SVD
in each bin x bin block of B
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Algorithmic Idea 1, Binning

We group the M nodes according to the empirical marginal probability,
divide the matrix into blocks, then apply reqularized t-SVD to each block

p; large > p; small

Phase 1

Estimate non-uniform marginal p
Bin M nodes according to p;

Reqgularized t-SVD
in each bin x bin block of B

0; small
Key Challenges: B

v Binning is not exact, we need to deal with spillover!
v We need to piece together estimates over bins!
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Algorithmic Idea 2, Refinement

The coarse estimation from Phase 1 gives some global information.
Make use of that to do local refinement for each row / column of B

Phase 2 Anchor partition

Refine the estimate for each node
use linear regression

Achieve sample complexity
N = O(M/€e*) minmax optimal

Refinement
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Take-Away Message

Data generation

Structured @ X (0)

Learning

We identify a problem that lies at the core of many learning problems

Spectral algorithm is not solving for the non-convex MLE, we need
carefully designed algorithm to improve its statistical efficiency

Coming soon: estimation /approximation / property testing
of structured probability distribution
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