
1

Qingqing Huang

Efficient Spectral Methods for Learning Mixture Models
!

Laboratory for
Information & Decision
Systems

2016 February

Based on joint works with Munther Dahleh, Rong Ge, Sham Kakade, Greg Valiant.

2

Learning

✦  Infer about the underlying rule θ
 (Estimation, approximation, property testing, optimization of f(θ))

✓ X(✓)
Data generation

Learning

✦  Challenge:
 Exploit our prior for structure of the underlying θ
 to design fast algorithm that uses as few as possible data X
 to achieve the target accuracy in learning θ

Computation Complexity Sample Complexity dim(✓)!

3

Learning Mixture Models

H 2 {1, . . . ,K}

X = (X1, X2, . . . , XM) 2 X

✓

✓ = (#mixture components, mixing weights, conditional probabilities)

Samples Hidden variable!

Observed variables!

✦  Marginal distribution of the observables is a superposition of simple distributions

✦  Given N i.i.d. samples of observable variables, estimate the model parameters
���b✓ � ✓

���  ✏

b✓

Pr(X) =
KX

k=1

Pr(H = k)| {z } ·Pr(X|H = k)| {z }

4

Examples of Mixture Models

Gaussian Mixtures (GMMs)

Cluster

data points in space

Topic Models (Bag of Words)

Topic

words
in each document

✓

✓

5

Hidden Markov Models (HMM)

Current state

 Past, current, future
 observations

✓

Super-Resolution

Source

Complex sinusoids
✓

Examples of Mixture Models

6

Learning Mixture Models

✦  There exist exponential lower bounds for sample complexity (worst case analysis)

H 2 {1, . . . ,K}

X = (X1, X2, . . . , XM) 2 X

✓ Samples Hidden variable!

Observed variables!

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)

What do we know about sample complexity and computation complexity ?

✦  Given N i.i.d. samples of observable variables, estimate the model parameters b✓

7

Challenges in Learning Mixture Models

Can we learn “non-worst-cases” with provably efficient algorithms ?

✦  There exist exponential lower bounds for sample complexity (worst case analysis)

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)

Can we achieve statistical efficiency with tractable computation?

8

Contribution / Outline of the talk

Can we learn “non-worst-cases” with provably efficient algorithms ?

✦  There exist exponential lower bounds for sample complexity (worst case analysis)

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)

Can we achieve statistical efficiency with tractable computation?

ü  Spectral algorithms for learning GMMs, HMMs, Super-resolution
ü  Go beyond worst cases with randomness in analysis and algorithm

ü  Denoising low rank probability matrix with linear sample complexity
 (minmax optimal)

9

Paradigm of Spectral Algorithms for Learning

✓ X(✓)Samples

A⌦B ⌦ C = M

N = ∞
Mixture models Mixture of conditional distributions

Mixture of rank-one matrices/tensors

Easy inverse
problems

Compute statistics:
e.g. Moments,
Marginal probability

Spectral decomposition
to separate the mixtures

10

Paradigm of Spectral Algorithms for Learning

bA⌦ bB ⌦ bC = cM⇡
b✓

✓ X(✓)Samples

A⌦B ⌦ C = M

N finite

Easy inverse
problems

Spectral decomposition

Compute statistics

ü  PCA, Spectral clustering, Subspace system ID,… fit into this paradigm
ü  Problem specific algorithm design (what statistics M to use?)
 analysis (is the spectral decomposition stable?)

11

PART 1
Provably efficient spectral algorithms for learning mixture models

1.1 Learn GMMs: Go beyond worst cases by smoothed analysis

1.2 Learn HMMs: Go beyond worst cases by generic analysis

1.3 Super-resolution: Go beyond worst cases by randomized algorithm

12

Setup 1.1 Learn GMMs:

 Model Parameters: weights means covariance matrices wi µ(i) ⌃(i)

data points in -dimensional space n

x = N (µ(i)
,⌃(i)), i ⇠ wi

Cluster

M-dim data points
✓

[k]

x 2 Rn

mixture of multivariate Gaussians k

13

✓  Mean vectors are well-separated

 Pair wise clustering [Dasgupta]…[Vempala&Wang]

✦  General case
 Moment matching method [Moitra&Valiant] [Belkin&Sinha]

✓  Mean vectors of spherical Gaussians are linearly independent

 Moments tensor decomposition [Hsu&Kakade]

✦  With restrictive assumptions on model parameters

Poly(n, eO(k)k)

Poly(n, k)

Prior Works 1.1 Learn GMMs:

Poly(n, k)

14

Worst case lower bound 1.1 Learn GMMs:

Can we learn every GMM instance to target accuracy
in poly runtime and using poly samples?

 No!

Exponential dependence in k for worst cases. [Moitra&Valiant]

Can we learn most GMM instances with poly algorithm?
without restrictive assumptions on model parameters

Yes!
Worst cases are not everywhere, and we can handle “non-worst-cases”

15

Escape from the worst cases

For an arbitrary instance

Nature perturbs the parameters with a small amount (ρ) of noise

Observe data generated by , design and analyze algorithm for

Smoothed Analysis Framework 1.1 Learn GMMs:

✓

e✓

e✓ e✓

Our Goal:
 Given samples from perturbed GMM, learn the perturbed parameters
 with negligible failure probability over nature’s perturbation

Hope�With high probability over nature’s perturbation, any arbitrary instance
 escapes from the degenerate cases, and becomes well conditioned.

ü  Bridge worst case and average case algo analysis [Spielman&Teng]
ü  A stronger notion than generic analysis

16

!
!
!
!
!
!
!
!

✦  Our algorithm learns the GMM parameters up to accuracy ε

✓  With fully polynomial time and sample complexity

✓  Assumption: data in high enough dimension

✓  Under smoothed analysis: works with negligible failure probability

n = ⌦(k2)

Poly(n, k, 1/✏)

Main Results 1.1 Learn GMMs

“Learning Mixture of Gaussians in High dimensions” R. Ge, H, S. Kakade (STOC 2015)

17

Algorithmic Ideas 1.1 Learn GMMs:

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

Method of moments: match 4-th and 6-th order moments
Key challenge: Moment tensors are not of low rank, but they have special structures

M4 M6

✦  Moment tensors are structured linear projections of desired low rank tensors
✦  Delicate algorithm to invert the structured linear projections

M4 = F4(X4)

M6 = F6(X6)

!
!
!
!

X4 =
kX

i=1

⌃(i) ⌦ ⌃(i),

X6 =
kX

i=1

⌃(i) ⌦ ⌃(i) ⌦ ⌃(i).

Structured
linear projection

18

Algorithmic Ideas 1.1 Learn GMMs:

Method of moments: match 4-th and 6-th order moments
Key challenge: Moment tensors are not of low rank, but they have special structures

M4 M6

Why “high dimension n” & “smoothed analysis” help us to learn?
✓  We have many moment matching constraints with only low order moments
 # free parameters < #6-th moments

✓  The randomness in nature’s perturbation makes matrices/tensors well-conditioned

⌦(kn2) ⌦(n6)

Gaussian matrix X 2 Rn⇥m
, with prob at least 1�O(✏n) �m(X) � ✏

p
n.

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

19

 PART 1
Provably efficient spectral algorithms for learning mixture models

1.1 Learn GMMs: Go beyond worst cases by smoothed analysis

1.2 Learn HMMs: Go beyond worst cases by generic analysis

1.3 Super-resolution: Go beyond worst cases by randomized algorithm

20

Transition probability matrix:

Observation probabilities:

Setup 1.2 Learn HMMs:

Hidden state!

Observation!

N = 2n+1 window size

[k]

[d]

ht

xt

ht�1

xt�1 xt+1

ht+1 ht+n

xt+nxt�n

ht�n

Q 2 Rk⇥k

O 2 Rd⇥k

 Given length-N sequences of observation, how to recover �
 Our focus: How large the window size N needs to be?

✓ = (Q,O)

21

✦  HMM is not efficiently PAC learnable, under noisy parity assumption
 Construct an instance with reduction to parity of noise

Required window size , Algorithm Complexity is

1.2 Learn HMMs:

[Abe,Warmuth] [Kearns]

⌦(dk)

Hidden state! Observation! N = 2n+1 window size [k] [d]

N = ⌦(k)

!
!
!
!
!
!

✦  Excluding a measure 0 set in the parameter space of  
 
for all most all HMM instances, the required window size is !

!
✦  Spectral algo achieves sample complexity and runtime both !

N = ⇥(logd k)

poly(d, k)

✓ = (Q,O)

 Our Result

Hardness Results

“Minimal Realization Problems for Hidden Markov Models”
 H, R. Ge, S. Kakade, M. Dahleh (IEEE Transactions on Signal Processing, 2016)

22

Algorithmic idea 1.2 Learn HMMs:

A = Pr
�
x1, x2, . . . , xn

��
h0

�

B = Pr
�
x�1, x�2, . . . , x�n

��
h0

�

C = Pr
�
x0, h0

�

1. is a low rank tensor of rank k M

2. Extract from tensor factors A B Q,O

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

Key challenge:
How large window size needs to be, so that we have unique tensor decomp

2 Rdn⇥dn⇥d

M = Pr
�
(xn�1, . . . , x�1), x0, (x1, . . . , xn)

�

A = (O � (O � (O � . . . (O �O| {z }
n

Q) . . .)Q)Q)Q| {z }
n

,

B = (O � (O � (O � . . . (O �O| {z }
n

eQ) . . .) eQ) eQ) eQ| {z }
n

,

C = Odiag(⇡)

Our careful generic analysis: !
If , worst cases all lie in a measure 0 set�!N = ⇥(logd k)

23

 PART 1
Provably efficient spectral algorithms for learning mixture models

1.1 Learn GMMs: Go beyond worst cases by smoothed analysis

1.2 Learn HMMs: Go beyond worst cases by generic analysis

1.3 Super-resolution: Go beyond worst cases by randomized algorithm

24

Setup

✓ X(✓)

* =

 Take Fourier measurement of the band-limited observation
 How to recover the point sources with coarse measurement of the signal?

ü  small number of Fourier measurements
ü  Low cutoff frequency

1.3 Super-Resolution:

Band-limited

25

ü  Recover point sources (a mixture of k vectors in d-dimensional space)

x(t) =
Pk

j=1 wj�µ(j) .

 Problem Formulation

ksk1  cuto↵ freq

1.3 Super-Resolution:

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

bounded noise |z(s)|  ✏z, 8s

ü  Use bandlimited and noisy Fourier measurements.

kbµ(j) � µ(j)k2  ✏, 8j 2 [k]ü  Achieve target accuracy

� = minj 6=j0 kµ(j) � µ(j0)k2 Assume minimum separation

26

Prior Works

✦  1-dimensional
✓  Take uniform measurements on the grid

✓  SDP algorithm with cut-off frequency

✓  Hardness result

✓  One can use random measurements to recover measurements

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

1.3 Super-Resolution:

� = minj 6=j0 kµ(j) � µ(j0)k2

✦  d-dimensional
✓  Mult-dim grid

✓  Algorithm complexity

N = ⌦(1
�)

k log(k) 2N
[Tang, Bhaskar, Shah, Recht]

[Candes, Fernandez-Granda]

s 2 {�N, . . . ,�1, 0, 1, . . . , N}

[Moitra] N > C
�

µ(j)

s 2 {�N, . . . ,�1, 0, 1, . . . , N}d

O

✓
poly(k,

1

�
)

◆d

µ(j)

27

✦  Our algorithm achieves stable recovery

✓  using a number of Fourier measurements

✓  cutoff freq of the measurements bounded by

✓  algorithm runtime

✓  algorithm works with negligible failure probability

O((k + d)2)

O(1/�)

Main Result

O((k + d)3)

cuto↵ freq measurements runtime

SDP Cd
�1

(1

�1
)d poly((1

�1
)d, k)

MP - - -

Ours log(kd)
�

(k log(k) + d)2 (k log(k) + d)2

1.3 Super-Resolution:

“Super-Resolution off the Grid” H, S. Kakade (NIPS 2015)

28

 Algorithmic Idea

ü  Skip intermediate step of recovering measurements on the hyper-grid
ü  Prony’s method (Matrix-Pencil / MUSIC / …) is just choosing deterministically

F = VS0 ⌦ VS0 ⌦ (V2Dw),

(Vandermonde Matrix
with complex nodes)

(Rank-k 3-way tensor)

VS =

2

66664

ei⇡<µ(1),s(1)> . . . ei⇡<µ(k),s(1)>

ei⇡<µ(1),s(2)> . . . ei⇡<µ(k),s(2)>

... . . .
...

ei⇡<µ(1),s(m)> . . . ei⇡<µ(k),s(m)>

3

77775
.

d⇥ d⇥ 2

d⇥ k

⌦(Nd)

1.3 Super-Resolution:
✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

s

ü  Tensor decomposition with measurements on random frequencies
d

ü  Random samples such that admits particular low rank decomp s F

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

29

 Algorithmic Idea

²  Why we do not contradict the hardness result?

ü  If we design a fixed grid of to take measurements

 there always exists model instances such that the particular grid fails

ü  Let the locations of be random (with structure for tensor decomp)
 then for any model instance, algo works with high probability

f(s)

s

s

O

✓
poly(k,

1

�
)

◆d

O((k + d)2) vs

1.3 Super-Resolution:

²  Tensor decomposition with measurements on random frequencies

30

✦  This problem is at the core of many spectral algorithms
✦  We capitalize the insights from community detection to solve it

PART 2
Can we achieve optimal sample complexity in a tractable way?

Estimate low rank probability matrices with linear sample complexity

31

Setup 2. Low rank matrix

Probability Matrix B 2 RM⇥M
+

(distribution over outcomes) M2 (freq counts over outcomes)

X✓

M2

B = Poisson(NB)

 i.i.d. samples N

.18! .14! .08! .07! .07!

.14! .29! .09! .07! .10!

.08! .09! .05! .40! .04!

.08! .07! .04! .04! .04!

.07! .10! .04! .05! .05!

 is of rank 2: B B = pp> + qq>

5! 3! 2! 1! 1!

3! 4! 1! 0! 1!

2! 2! 1! 0! 1!

2! 1! 0! 1! 0!

1! 2! 1! 0! 0!

.40!

.20!

.15!

.15!

.10!

.15!

.40!

.15!

.10!

.20!

p qB

M = 5

B

bBGoal: find rank-2 such that
N sample complexity: upper bound algorithm, lower bound

k bB � Bk1  ✏

N = 20

32

Connection to mixture models 2. Low rank matrix

joint distribution over word pairs B

distribution of consecutive outputs B

Pr(word1,word2
��
topic = T1) = pp>

Pr(word1,word2
��
topic = T2) = qq>

Topic
model

HMM
Pr(output1, output2

��
state = Si) = Oi(OQi)

>

empirical counts find low rank close to B bB B

Extract parameters estimates N data samples

33

2. Low rank matrix

MLE is non-convex optimization L let’s try something “spectral” J

Sub-Optimal Attempt

Probability Matrix B 2 RM⇥M
+

B = Poisson(NB)

 i.i.d. samples N

 is of rank 2: B B = ⇢⇢> +��>

X✓

34

Sub-Optimal Attempt

Probability Matrix B 2 RM⇥M
+

B = Poisson(NB)

 i.i.d. samples N

 is of rank 2: B B = ⇢⇢> +��>

X✓

✦  Set to be the rank 2 truncated SVD of bB

✦  To achieve accuracy need k bB � Bk1  ✏ N = ⌦(M2
logM)

✦  Small data in practice!
 Word distribution in language has fat tail.
 More sample documents , larger the vocabulary size MN

✦  Not sample efficient! Hopefully N = ⌦(M)

1
NB =

1
NPoisson(NB) ! B, as N ! 1

1

N
B

2. Low rank matrix

35

Main Result 2. Low rank matrix

Testing property is no easier than estimating ?!

!
!
!
!
!
!
!
!
!
!
!
!
!

✦  Our upper bound algorithm:

✓  Rank-2 estimate with accuracy

✓  Using number of sample counts

✓  Runtime

✦  We prove (strong) lower bound:

✓  Need a sequence of observations to test whether
the sequence is i.i.d. of unif (M) or generated by a 2-state HMM

bB k bB � Bk1  ✏

N = O(M/✏2)

O(M3)

⌦(M)

8✏ > 0

Lead to improved spectral algorithms for learning

“Recovering Structured Probability Matrices “ H, S. Kakade, W. Kong, G. Valiant, (submitted to STOC 2016)

36

We capitalize the idea of community detection in sparse random network,
which is a special case of our problem formulation

Expected connection
Adjacency matrix

Algorithmic Idea

M nodes 2 communities
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

p qB B

.03!

.03!

.03!

.30!

.30!

.30!

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

generate
estimate

37

Expected connection
Adjacency matrix

Algorithmic Idea

M nodes 2 communities
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

.03!

.03!

.03!

.30!

.30!

.30!

p qB B

Regularize Truncated SVD: [Le, Levina, Vershynin]
 remove heavy row/column from B, run rank-2 SVD on the remaining graph

generate
estimate

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

We capitalize the idea of community detection in sparse random network,
which is a special case of our problem formulation

38

Expected connection
Adjacency matrix

Algorithmic Idea

M nodes 2 communities
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix

Regularize Truncated SVD: [Le, Levina, Vershynin]
 remove heavy row/column from B, run rank-2 SVD on the remaining graph

Key Challenge:
In our general setup, we do not have homogeneous marginal probabilities

B = ⇢⇢> +��>Probability matrix
Sample counts M ⇥M

We capitalize the idea of community detection in sparse random network,
which is a special case of our problem formulation

matrix
B = Poisson(NB)

39

Algorithmic Idea 1, Binning 2. Low rank matrix

1.  Estimate non-uniform marginal

2.  Bin M words according to

3.  Regularized t-SVD in each
bin × bin block of to estimate

Phase 1
b⇢

b⇢i

B

Key Challenges:
ü  Binning is not exact, we need to deal with spillover!
ü  We need to piece together estimates over bins!

We group words according to the empirical marginal probability,
divide the matrix to blocks, then apply regularized t-SVD to each block

40

2. Low rank matrix Algorithmic Idea 2, Refinement

1.  Phase 1 gives coarse estimate
for many words

2.  Refine the estimate for each word
use linear regression

3.  Achieve sample complexity
N = O(M/✏2)

Phase 2

The coarse estimation from Phase 1 gives some global information
Make use of that to do local refinement for each row / column

41

✦  Spectral methods are powerful tools for learning mixture models.
We can go beyond worst case analysis by exploiting the
randomness in the analysis / algorithm.

✦  To make spectral algorithms more practical, one needs careful

algorithm implementation to improve sample complexity.

Conclusion

Mixture model à Mixture of conditional distribution à Mixture of rank one tensors

Go beyond worst cases
ü  Exploit randomness in the model parameters (smoothed / generic analysis)
ü  Exploit randomness in the algorithm

42

Future works

✓  Robustness:
Agnostic learning, generalization error analysis…

✓  Dynamics:
Extend the analysis techniques and algorithmic ideas to learning
of random processes, with streaming data, iterative algorithms…

✓  Get hands dirty with real !

✓ X(✓)
Data generation

Learning

X(✓)

43

✦  “Learning Mixture of Gaussians in High dimensions”
 R. Ge, H, S. Kakade (STOC 2015)

References

✦  “Super-Resolution off the Grid”
 H, S. Kakade (NIPS 2015)

✦  “Minimal Realization Problems for Hidden Markov Models”
 H, R. Ge, S. Kakade, M. Dahleh (IEEE Transactions on Signal Processing, 2016)

✦  “Recovering Structured Probability Matrices “
 H, S. Kakade, W. Kong, G. Valiant, (submitted to STOC 2016)

45

Tensor Decomposition

✦  Multi-way array in matlab
✦  2-way tensor =matrix
✦  3-way tensor:

!
!
!
!

Mj1,j2,j3 , j1 2 [nA], j2 2 [nB], j3 2 [nC]

46

✦  Sum of rank one tensors

!
!
!
!

= =
kX

i=1

M =
kX

i=1

A[:,i] ⌦B[:,i] ⌦ C[:,i] = A ⌦ B ⌦ C

⌦ ⌦

[a⌦ b⌦ c]j1,j2,j3 = aj1bj2cj3

Tensor Decomposition

 Tensor rank: minimum number of !
 summands in a rank decomposition!

47

Tensor Decomposition

✦  Necessary condition for unique tensor decomposition

(the algorithm boils down to matrix SVD)

M =
kX

i=1

A[:,i] ⌦B[:,i] ⌦ C[:,i] = A ⌦ B ⌦ C

If and are of full rank k, and has rank

we can decompose to uniquely find the factors

in poly time and stability depends poly on condition number of

BA C � 2

M

BA C

BA C

