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Learning 

✦  Infer about the underlying rule θ 
 (Estimation, approximation, property testing, optimization of  f(θ) )  

✓ X(✓)
Data generation 

Learning 

✦  Challenge:           
         Exploit our prior for structure of the underlying θ  
         to design fast algorithm that uses as few as possible data X  
         to achieve the target accuracy in learning θ 

Computation Complexity Sample Complexity dim(✓)!
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Learning Mixture Models 

H 2 {1, . . . ,K}

X = (X1, X2, . . . , XM ) 2 X

✓

✓ = ( #mixture components,   mixing weights,    conditional probabilities ) 

Samples Hidden variable!

Observed variables!

✦  Marginal distribution of the observables is a superposition of simple distributions 

✦  Given N i.i.d. samples of observable variables, estimate the model parameters 
���b✓ � ✓

���  ✏

b✓

Pr(X) =
KX

k=1

Pr(H = k)| {z } ·Pr(X|H = k)| {z }
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Examples of Mixture Models 

Gaussian Mixtures (GMMs) 

Cluster 

data points in space 

Topic Models  (Bag of Words) 

Topic 

words  
in each document 

✓

✓
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Hidden Markov Models (HMM) 

Current state 

 Past, current, future  
 observations 

✓

Super-Resolution  

Source 

Complex sinusoids 
✓

Examples of Mixture Models 
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Learning Mixture Models 

✦  There exist exponential lower bounds for sample complexity (worst case analysis) 

H 2 {1, . . . ,K}

X = (X1, X2, . . . , XM ) 2 X

✓ Samples Hidden variable!

Observed variables!

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)  

What do we know about sample complexity and computation complexity ? 

✦  Given N i.i.d. samples of observable variables, estimate the model parameters b✓
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Challenges in Learning Mixture Models 

Can we learn “non-worst-cases” with provably efficient algorithms ? 

✦  There exist exponential lower bounds for sample complexity (worst case analysis) 

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)  

Can we achieve statistical efficiency with tractable computation? 
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Contribution / Outline of the talk 

Can we learn “non-worst-cases” with provably efficient algorithms ? 

✦  There exist exponential lower bounds for sample complexity (worst case analysis) 

✦  Maximum Likelihood Estimation is non-convex optimization (EM is heuristics)  

Can we achieve statistical efficiency with tractable computation? 

ü  Spectral algorithms for learning GMMs, HMMs, Super-resolution 
ü  Go beyond worst cases with randomness in analysis and algorithm 

ü  Denoising low rank probability matrix with linear sample complexity 
                                                                                                       (minmax optimal) 
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Paradigm of Spectral Algorithms for Learning 

✓ X(✓)Samples 

A⌦B ⌦ C = M

N = ∞ 
Mixture models  Mixture of conditional distributions 

Mixture of rank-one matrices/tensors 

Easy inverse 
problems 

Compute statistics: 
e.g. Moments,  
Marginal probability 

Spectral decomposition 
to separate the mixtures 
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Paradigm of Spectral Algorithms for Learning 

bA⌦ bB ⌦ bC = cM⇡
b✓

✓ X(✓)Samples 

A⌦B ⌦ C = M

N finite 

Easy inverse 
problems 

Spectral decomposition 

Compute statistics 

ü  PCA, Spectral clustering,  Subspace system ID,… fit into this paradigm 
ü  Problem specific algorithm design (what statistics M to use?)  
                                       analysis (is the spectral decomposition stable?) 
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PART 1  
Provably efficient spectral algorithms for learning mixture models 

1.1 Learn GMMs:  Go beyond worst cases by smoothed analysis 

1.2 Learn HMMs:  Go beyond worst cases by generic analysis 

1.3 Super-resolution:  Go beyond worst cases by randomized algorithm 
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Setup 1.1 Learn GMMs: 

 Model Parameters:     weights          means           covariance matrices wi µ(i) ⌃(i)

data points in     -dimensional space n

x = N (µ(i)
,⌃(i)), i ⇠ wi

Cluster 

M-dim data points 
✓

[k]

x 2 Rn

mixture of      multivariate Gaussians k
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✓  Mean vectors are well-separated 

 Pair wise clustering [Dasgupta]…[Vempala&Wang] 

✦  General case  
 Moment matching method  [Moitra&Valiant] [Belkin&Sinha] 

 

✓  Mean vectors of spherical Gaussians are linearly independent 

 Moments tensor decomposition [Hsu&Kakade]  

✦  With restrictive assumptions on model parameters 

Poly(n, eO(k)k)

Poly(n, k)

Prior Works 1.1 Learn GMMs: 

Poly(n, k)
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Worst case lower bound 1.1 Learn GMMs: 

Can we learn every  GMM instance to target accuracy  
in poly runtime and using poly samples? 

 No! 

Exponential dependence in k for worst cases. [Moitra&Valiant] 

Can we learn most GMM instances with poly algorithm? 
without restrictive assumptions on model parameters 

Yes!  
Worst cases are not everywhere, and we can handle “non-worst-cases” 
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Escape from the worst cases 

For an arbitrary instance 

Nature perturbs the parameters with a small amount (ρ) of noise  
 
Observe data generated by       , design and analyze algorithm for  
 

Smoothed Analysis Framework 1.1 Learn GMMs: 

✓

e✓

e✓ e✓

Our Goal:     
                 Given samples from perturbed GMM,  learn the perturbed parameters  
                 with negligible failure probability over nature’s perturbation 

Hope�With high probability over nature’s perturbation, any arbitrary instance 
              escapes from the degenerate cases, and becomes well conditioned. 

ü   Bridge worst case and average case algo analysis   [Spielman&Teng] 
ü   A stronger notion than generic analysis 



16 

!
!
!
!
!
!
!
!

✦  Our algorithm learns the GMM parameters up to accuracy ε 

✓  With fully polynomial time and sample complexity 

✓  Assumption: data in high enough dimension  

✓  Under smoothed analysis: works with negligible failure probability 

n = ⌦(k2)

Poly(n, k, 1/✏)

Main Results 1.1 Learn GMMs 

“Learning Mixture of Gaussians in High dimensions”   R. Ge, H, S. Kakade (STOC 2015) 
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Algorithmic Ideas 1.1 Learn GMMs: 

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

Method of moments:  match 4-th and 6-th order moments                    
Key challenge:  Moment tensors are not of low rank, but they have special structures 

M4 M6

✦  Moment tensors are structured linear projections of desired low rank tensors 
✦  Delicate algorithm to invert the structured linear projections 

M4 = F4(X4)

M6 = F6(X6)

!
!
!
!

X4 =
kX

i=1

⌃(i) ⌦ ⌃(i),

X6 =
kX

i=1

⌃(i) ⌦ ⌃(i) ⌦ ⌃(i).

Structured  
linear projection 
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Algorithmic Ideas 1.1 Learn GMMs: 

Method of moments:  match 4-th and 6-th order moments                    
Key challenge:  Moment tensors are not of low rank, but they have special structures 

M4 M6

Why “high dimension n” & “smoothed analysis” help us to learn? 
✓  We have many moment matching constraints with only low order moments 
   # free parameters                       <       #6-th moments 

✓  The randomness in nature’s perturbation makes matrices/tensors well-conditioned 

    

⌦(kn2) ⌦(n6)

Gaussian matrix X 2 Rn⇥m
, with prob at least 1�O(✏n) �m(X) � ✏

p
n.

M4 = E[x⌦4]

M6 = E[x⌦6]

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓
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  PART 1  
Provably efficient spectral algorithms for learning mixture models 

1.1 Learn GMMs:  Go beyond worst cases by smoothed analysis 

1.2 Learn HMMs:  Go beyond worst cases by generic analysis 

1.3 Super-resolution:  Go beyond worst cases by randomized algorithm 
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Transition probability matrix: 

Observation probabilities: 

Setup 1.2 Learn HMMs: 

Hidden state!

Observation!

N = 2n+1 window size  

[k]

[d]

ht

xt

ht�1

xt�1 xt+1

ht+1 ht+n

xt+nxt�n

ht�n

Q 2 Rk⇥k

O 2 Rd⇥k

   Given length-N sequences of observation, how to recover                         � 
   Our focus: How large the window size N needs to be? 

✓ = (Q,O)
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✦  HMM is not efficiently PAC learnable, under noisy parity assumption 
     Construct an instance with reduction to parity of noise  

Required window size                       ,   Algorithm Complexity is  

1.2 Learn HMMs: 

[Abe,Warmuth] [Kearns]  

⌦(dk)

Hidden state! Observation! N = 2n+1 window size  [k] [d]

N = ⌦(k)

!
!
!
!
!
!

✦  Excluding a measure 0 set in the parameter space of  
 
for all most all HMM instances, the required window size is !

!
✦  Spectral algo achieves sample complexity and runtime both !

N = ⇥(logd k)

poly(d, k)

✓ = (Q,O)

 Our Result 

Hardness Results 

“Minimal Realization Problems for Hidden Markov Models”  
  H, R. Ge, S. Kakade, M. Dahleh  (IEEE Transactions on Signal Processing, 2016)  
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Algorithmic idea 1.2 Learn HMMs: 

A = Pr
�
x1, x2, . . . , xn

��
h0

�

B = Pr
�
x�1, x�2, . . . , x�n

��
h0

�

C = Pr
�
x0, h0

�

1.          is a  low rank tensor of rank k M

2.  Extract              from tensor factors  A B  Q,O

✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

Key challenge:  
How large window size needs to be, so that we have unique tensor decomp 

2 Rdn⇥dn⇥d

M = Pr
�
(xn�1, . . . , x�1), x0, (x1, . . . , xn)

�

A = (O � (O � (O � . . . (O �O| {z }
n

Q) . . . )Q)Q)Q| {z }
n

,

B = (O � (O � (O � . . . (O �O| {z }
n

eQ) . . . ) eQ) eQ) eQ| {z }
n

,

C = Odiag(⇡)

Our careful generic analysis: !
If                               , worst cases all lie in a measure 0 set�!N = ⇥(logd k)
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  PART 1  
Provably efficient spectral algorithms for learning mixture models 

1.1 Learn GMMs:  Go beyond worst cases by smoothed analysis 

1.2 Learn HMMs:  Go beyond worst cases by generic analysis 

1.3 Super-resolution:  Go beyond worst cases by randomized algorithm 
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Setup 

✓ X(✓)

* =

    Take Fourier measurement of the band-limited observation 
   How to recover the point sources with coarse measurement of the signal? 

ü  small number of Fourier measurements  
ü  Low cutoff frequency 

1.3 Super-Resolution: 

Band-limited  
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ü  Recover point sources  (a mixture of k vectors in d-dimensional space)  

x(t) =
Pk

j=1 wj�µ(j) .

             Problem Formulation 

ksk1  cuto↵ freq

1.3 Super-Resolution: 

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

bounded noise |z(s)|  ✏z, 8s

ü  Use bandlimited and noisy Fourier measurements. 

kbµ(j) � µ(j)k2  ✏, 8j 2 [k]ü  Achieve target accuracy 

� = minj 6=j0 kµ(j) � µ(j0)k2 Assume minimum separation 
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Prior Works  

✦  1-dimensional  
✓  Take uniform measurements on the grid 

 
✓  SDP algorithm with cut-off frequency 

  

✓  Hardness result 
 

✓  One can use                      random measurements to recover          measurements 

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)

1.3 Super-Resolution: 

� = minj 6=j0 kµ(j) � µ(j0)k2

✦  d-dimensional 
✓  Mult-dim grid 

✓  Algorithm complexity 

N = ⌦( 1
� )

k log(k) 2N
[Tang, Bhaskar, Shah, Recht] 

[Candes, Fernandez-Granda] 

s 2 {�N, . . . ,�1, 0, 1, . . . , N}

[Moitra] N > C
�

µ(j)

s 2 {�N, . . . ,�1, 0, 1, . . . , N}d

O

✓
poly(k,

1

�
)

◆d

µ(j)
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✦  Our algorithm achieves stable recovery 

✓  using a number of                              Fourier measurements  

✓  cutoff freq of the measurements bounded by 

✓  algorithm runtime  

✓  algorithm works with negligible failure probability 

O((k + d)2)

O(1/�)

Main Result 

O((k + d)3)

cuto↵ freq measurements runtime

SDP Cd
�1

( 1

�1
)d poly(( 1

�1
)d, k)

MP - - -

Ours log(kd)
�

(k log(k) + d)2 (k log(k) + d)2

1.3 Super-Resolution: 

“Super-Resolution off the Grid”   H, S. Kakade (NIPS 2015) 
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      Algorithmic Idea 

ü  Skip intermediate step of recovering                  measurements on the hyper-grid 
ü  Prony’s method  (Matrix-Pencil / MUSIC / …)  is just choosing     deterministically  

F = VS0 ⌦ VS0 ⌦ (V2Dw),

(Vandermonde Matrix  
with complex nodes) 

(Rank-k 3-way tensor) 

VS =

2

66664

ei⇡<µ(1),s(1)> . . . ei⇡<µ(k),s(1)>

ei⇡<µ(1),s(2)> . . . ei⇡<µ(k),s(2)>

... . . .
...

ei⇡<µ(1),s(m)> . . . ei⇡<µ(k),s(m)>

3

77775
.

d⇥ d⇥ 2

d⇥ k

⌦(Nd)

1.3 Super-Resolution: 
✓ X(✓)

A⌦B ⌦ C = M

bA⌦ bB ⌦ bC = cM⇡b✓

s

ü  Tensor decomposition with measurements on random frequencies 
d 

ü  Random samples       such that        admits particular low rank decomp s F

ef(s) =
kX

j=1

wje
i⇡<µ(j),s> + z(s)
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      Algorithmic Idea 

²     Why we do not contradict the hardness result? 
 
 
 
ü   If we design a fixed grid of       to take measurements  

   there always exists model instances such that the particular grid fails 
  

ü   Let the locations of      be random (with structure for tensor decomp) 
   then for any model instance, algo works with high probability 

f(s)

s

s

O

✓
poly(k,

1

�
)

◆d

O((k + d)2) vs 

1.3 Super-Resolution: 

²  Tensor decomposition with measurements on random frequencies 



30 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  

✦  This problem is at the core of many spectral algorithms  
✦  We capitalize the insights from community detection to solve it 

PART 2  
Can we achieve optimal sample complexity in a tractable way? 

Estimate low rank probability matrices with linear sample complexity 
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Setup 2. Low rank matrix 

Probability Matrix  B 2 RM⇥M
+

(distribution over         outcomes) M2 ( freq counts over        outcomes) 

X✓

M2

B = Poisson(NB)

        i.i.d. samples N

.18! .14! .08! .07! .07!

.14! .29! .09! .07! .10!

.08! .09! .05! .40! .04!

.08! .07! .04! .04! .04!

.07! .10! .04! .05! .05!

 is of rank 2:  B B = pp> + qq>

5! 3! 2! 1! 1!

3! 4! 1! 0! 1!

2! 2! 1! 0! 1!

2! 1! 0! 1! 0!

1! 2! 1! 0! 0!

.40!

.20!

.15!

.15!

.10!

.15!

.40!

.15!

.10!

.20!

p qB

M = 5

B

bBGoal:  find rank-2         such that  
N sample complexity:  upper bound algorithm, lower bound 

k bB � Bk1  ✏

N = 20
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Connection to mixture models 2. Low rank matrix 

joint distribution over word pairs B

distribution of consecutive outputs B

Pr(word1,word2
��
topic = T1) = pp>

Pr(word1,word2
��
topic = T2) = qq>

Topic  
model 

HMM 
Pr(output1, output2

��
state = Si) = Oi(OQi)

>

 
empirical counts                 find low rank       close to  B bB B

Extract parameters estimates N  data samples 
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2. Low rank matrix 

MLE is non-convex optimization L         let’s try something “spectral” J 

Sub-Optimal Attempt 

Probability Matrix  B 2 RM⇥M
+

B = Poisson(NB)

        i.i.d. samples N

 is of rank 2:  B B = ⇢⇢> +��>

X✓
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Sub-Optimal Attempt 

Probability Matrix  B 2 RM⇥M
+

B = Poisson(NB)

        i.i.d. samples N

 is of rank 2:  B B = ⇢⇢> +��>

X✓

✦  Set         to be the rank 2 truncated SVD of  bB

✦  To achieve accuracy                               need                     k bB � Bk1  ✏ N = ⌦(M2
logM)

✦  Small data in practice! 
      Word distribution in language has fat tail. 
      More sample documents       , larger the vocabulary size MN

✦  Not sample efficient!   Hopefully  N = ⌦(M)

1
NB =

1
NPoisson(NB) ! B, as N ! 1

1

N
B

2. Low rank matrix 
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Main Result 2. Low rank matrix 

Testing property is no easier than estimating ?! 

!
!
!
!
!
!
!
!
!
!
!
!
!

✦  Our upper bound algorithm:    

✓  Rank-2 estimate        with accuracy 

✓  Using                                 number of sample counts 

✓  Runtime  

✦  We prove (strong) lower bound:  

✓  Need a sequence of                   observations to test whether  
the sequence is i.i.d. of unif (M) or generated by a 2-state HMM  

bB k bB � Bk1  ✏

N = O(M/✏2)

O(M3)

⌦(M)

8✏ > 0

Lead to improved spectral algorithms for learning 

“Recovering Structured Probability Matrices “   H, S. Kakade, W. Kong, G. Valiant, (submitted to STOC 2016)  
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We capitalize the idea of community detection in sparse random network, 
which is a special case of our problem formulation 

 
 

Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix 

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

p qB B

.03!

.03!

.03!

.30!

.30!

.30!

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

generate 
estimate 
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Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix 

!
!
!

!
!
!

!
!
!
!
!
!

!
!
!
!
!
!

!
!
!

!
!
!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.09! .09! .09! .02! .02! .02!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.02! .02! .02! .09! .09! .09!

.30!

.30!

.30!

.03!

.03!

.03!

.03!

.03!

.03!

.30!

.30!

.30!

p qB B

Regularize Truncated SVD:                                                         [Le, Levina, Vershynin] 
 remove heavy row/column from B,  run rank-2 SVD on the remaining graph 

generate 
estimate 

1! 1! 0! 0! 1! 0!

1! 1! 1! 0! 1! 1!

0! 1! 1! 0! 1! 0!

0! 0! 0! 0! 1! 1!

1! 1! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

We capitalize the idea of community detection in sparse random network, 
which is a special case of our problem formulation 
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Expected connection 
Adjacency matrix 

Algorithmic Idea 

M nodes  2 communities 
B = pp> + qq>

B = Bernoulli(NB)

2. Low rank matrix 

Regularize Truncated SVD:                                                         [Le, Levina, Vershynin] 
 remove heavy row/column from B,  run rank-2 SVD on the remaining graph 

Key Challenge:  
In our general setup, we do not have homogeneous marginal probabilities  

 
 

B = ⇢⇢> +��>Probability matrix 
Sample counts M ⇥M

We capitalize the idea of community detection in sparse random network, 
which is a special case of our problem formulation 

matrix 
B = Poisson(NB)
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Algorithmic Idea 1, Binning 2. Low rank matrix 

1.  Estimate non-uniform marginal  

2.  Bin M words according to  

3.  Regularized t-SVD in each   
bin × bin block of        to estimate  

Phase 1 
b⇢

b⇢i

B

Key Challenges: 
ü  Binning is not exact, we need to deal with spillover! 
ü  We need to piece together estimates over bins! 

We group words according to the empirical marginal probability, 
divide the matrix to blocks, then apply regularized t-SVD to each block 
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2. Low rank matrix Algorithmic Idea 2, Refinement 

1.  Phase 1 gives coarse estimate  
for many words  

2.  Refine the estimate for each word 
use linear regression 

3.  Achieve sample complexity 
N = O(M/✏2)

Phase 2 

The coarse estimation from Phase 1 gives some global information 
Make use of that to do local refinement for each row / column 
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✦  Spectral methods  are powerful tools for learning mixture models.  
We can go beyond worst case analysis by exploiting the 
randomness in the analysis / algorithm. 

 
✦  To make spectral algorithms more practical, one needs careful 

algorithm implementation to improve sample complexity. 

Conclusion 

Mixture model à Mixture of conditional distribution à Mixture of rank one tensors 

Go beyond worst cases  
ü  Exploit randomness in the model parameters  (smoothed / generic analysis) 
ü  Exploit randomness in the algorithm 
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Future works 

✓  Robustness: 
Agnostic learning, generalization error analysis… 

✓  Dynamics:   
Extend the analysis techniques and algorithmic ideas to learning  
of random processes, with streaming data,  iterative algorithms… 

✓  Get hands dirty with real            ! 

✓ X(✓)
Data generation 

Learning 

X(✓)
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✦  “Learning Mixture of Gaussians in High dimensions”  
  R. Ge, H, S. Kakade (STOC 2015) 
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Tensor Decomposition 

✦  Multi-way array in matlab 
✦  2-way tensor =matrix 
✦  3-way tensor: 

!
!
!
!

Mj1,j2,j3 , j1 2 [nA], j2 2 [nB ], j3 2 [nC ]
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✦  Sum of rank one tensors 

!
!
!
!

= =
kX

i=1

M =
kX

i=1

A[:,i] ⌦B[:,i] ⌦ C[:,i] = A ⌦ B ⌦ C

⌦ ⌦

[a⌦ b⌦ c]j1,j2,j3 = aj1bj2cj3

Tensor Decomposition 

     Tensor rank: minimum number of !
     summands in a rank decomposition!
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Tensor Decomposition 

✦  Necessary condition for unique tensor decomposition 

(the algorithm boils down to matrix SVD)  

M =
kX

i=1

A[:,i] ⌦B[:,i] ⌦ C[:,i] = A ⌦ B ⌦ C

If      and      are of full rank k, and      has rank  

we can decompose       to uniquely find the factors  

in poly time and stability depends poly on condition number of  

BA C � 2

M

BA C

BA C


