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Motivation
Observe stationary
Randomness ‘ ‘ random process
[ ] — {1121"'1 d}

+ The random process is characterized by the joint distribution

( Probabilities of strings of any length N)

S(%) — {P(yl — I,y =In): VIV € [dN, YN ¢ Z}



Motivation

Observe stationary
Randomness » » random process
[ ] — {1121"'1 d}

Structures

+ The random process is characterized by the joint distribution
( Probabilities of strings of any length N)

S(%) — {P(yl — I,y =In): VIV € [dN, YN ¢ Z}

+ Can we find a finite state system description of the process?



Motivation

Randomness ‘.» Observed random process
c ld]={1.2.... d}

+ Assume that the process can be described by a finite state system

0= (d,k,uecRF veRF AD c R¥** . ] ¢ [d])

l
Wi41 = Al t)wt, Wo = U,

.
= B VIV € [d]V,VN € Z

]
A\
2
VR
[t
N——r"

P(ylzlla'°'7yN:lN) |
— o/ An)  A) AU=1)  Al—n),,



Motivation

‘ Observed random process
y(t) € [d]={1,2,..., d}

Randomness ‘ P,

+ Assume that the process can be described by a finite state system

0= (d,k,uecRF veRF AD c R¥** . ] ¢ [d])

State has no physical meanin
t+1 ts 0 , Wy c Rk

o
T VIV e [d]Y,VN € Z

P(ylzllaayN:lN):zN(liV) ,
_ A AW 4G g,



Finite state system realization
0= (dkuecRFoveRF AD e RF*F .1 ¢ [d)])

+ Multi-linear system wiyq = A%w,,  wy =,

/
<t — U Wy,



Finite state system realization
0= (dk,ucRveRF AD c RF*F ] ¢ [d])
+ Multi-linear system wiyq = A%w,,  wy =,

/
<t — U Wy,

+ Quasi- HMM realization
If P(y; = ll, - yn =Ily) = 2n(17)) isa valid joint distribution

and ZA(” =/, | » AV v=wv. (stationarity)

| jEld]




Finite state system realization
0= (dk,ucRveRF AD c RF*F ] ¢ [d])
+ Multi-linear system wiyq = A%w,,  wy =,

/
<t — U Wy,

+ Quasi- HMM realization
If P(y; = ll, - yn =Ily) = 2n(17)) isa valid joint distribution

and v ZA“) =/, | Y AY|v=v. (stationarity)

| jEld]

+ HMM realization
finaddition  v=ep, weR) u=1,

A € [0,1)* v € [d],



Finite state system realization
0= (dkuecRFoveRF AD e RF*F .1 ¢ [d)])

+ Multi-linear system wiyq = A%w,,  wy =,

/
<t — U W,

+ Quasi- HMM realization
If P(y1 =11, ,ynv =In) =2n(1') isa valid joint distribution

and W | Y AV | =u, |Y AV v=wv. (stationarity)

| jeld] jEld]

+ HMM realization 1-1 mapping to

If in addition v=er, uweRN D u =1,
" ZL: Transition: @ € RF**

AY) e [0, 1]k V) e [d], Observation: O € R***




Realization problems

+ Input: probabilities of length N strings of an HMM

+ Output:

SN =Py =1y, ,yny =In) : VIV € [dN}

(d,k,u e R¥. v e R¥, AW e R¥** . | ¢ [d])

Minimal order quasi-HMM realization
Minimal order HMM realization

S(%) — {P(y{V —1V): vV e [dV, VN ¢ Z}

Py =1V) =/ A AG) ANy IV ¢ [g)V

10



Realization problems

+ Informational complexity

v When is the minimal model identifiable from S*¥)? window size N =?

+ Computational complexity

v Can we compute the minimal realization with efficient algorithms?

+ Statistical complexity
v Are the algorithms robust to estimation noise?

In general, learning HMMs is hard

11



Realization problems

+ Informational complexity

v When is the minimal model identifiable from S*¥)? window size N =?

Main contribution 1:

v Can we compute the minimal realization with efficient algorithms?

Main contribution 2

v Are the algorithms robust to estimation noise?

+ Computational complexity

+ Statistical complexity

In general, learning HMMs is hard

12






Quasi-HMM realization

+ Input: probabilities of length N =2n+1 strings

Y-ny---5Y—-1 Yo Y1,.--,Yn
SN =up, .}

+ Output: a minimal quasi-HMM realization

+ Key:

0° = (d, k,u,v, AV : 1 € [d])

Arrange 8™ ={P, . .. 4.} into matrices:

H(O)a{[_](]’) = [d]} c Rd"xd”

Matrix rank decomposition of H(®
equivalent minimal quasi realization up to linear transformation

Complexity?

14



Quasi-HMM realization ( algorithm )

+ Input: s® arrangedinto H {HY :j e [d]} e R* *¥"

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

Enumerate all length nstrings: L") = (I; = 1)d" * + (la = 1)d"* + -+ 1,, VI} = WE%



Quasi-HMM realization ( algorithm )
+ Input: ™ arrangedinto HY {HY :j e [d]} € R ¥

[H(O)]L(l?),L(II?) - P(yg_l =17, yoi = 1:?)
=/ Aln) AU A=) AU=n)y,

n letters now and future n letters in the past

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

Enumerate all length nstrings: L") = (I; = 1)d" * + (la = 1)d"* + -+ 1,, VI} = [ﬁ%n



Quasi-HMM realization ( algorithm )
+ Input: s arrangedinto HY {HY) . j e [d]} e RT ¥4

[H(O)]L(lgb),L(lj) — P(yg_l =1, yoi = 1:?)
— o/ AUn) A fU-1) AUy,

n letters now and future n letters in the past

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

AL A1) T

A 4@
go | 5 [Am AWy A@ --A<d>v}

A A

Enumerate all length nstrings: L") = (I; = 1)d" * + (la = 1)d"* + -+ 1,, VI} = W];L



Quasi-HMM realization ( algorithm )
+ Input: ™ arrangedinto HY {HY) :j e [d]} e R ¥

[H(O)]L(l”) LAY — P( 6 = I, yoi = lzn)
W Aln) AU AU=1)  A-n)),

n letters now and future n letters in the past

+ assume minimal realization ¢° = (d, k,u,v, A® : [ € [d])

YL 1) 7
' 2)
7(0) _ [Am . ). .A<d>v}
' d)

Enumerate all length nstrings: L") = (I; = 1)d" * + (la = 1)d"* + -+ 1,, VI} = [ﬁig




Quasi-HMM realization ( algorithm )
+ Input: s arrangedinto HY {HY) . j e [d]} e RT ¥4

H], 4 paemy = P77 =170, o = j, y7 =17),

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

19



Quasi-HMM realization ( algorithm )
+ Input: ™ arrangedinto HY {HY :j e [d]} € R ¥

[H(j)]L(l?),L(ljf) — P(y:1 =127, yo=1J, y1 = 1?)»
= o/|AUn) AU Alo)) AU=1) - AUy

n letters in the future Conditional on n letters in the past

current letter

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

20



Quasi-HMM realization ( algorithm )

+ Input: s® arrangedinto H {HY :j e [d]} e R* *¥"

[H(j)]L(ly),L(lj’f) — P(y:1 =127, yo=1J, y1 = 1?)»

/
— U

A(ln) L A(ll)

Allo

)

Al=1) AU

)

(V)

current letter

n letters in the future Conditional on n letters in the past

+ assume minimal realization ¢° = (d, k,u,v, AY : [ € [d])

H) —

W AL oo A1) T
W AL o A2)

AW AW@

A0) [Au) Ay A@D A(o%}

21



Quasi-HMM realization ( algorithm )

+ Input: s® arrangedinto H {HY :j e [d]} € R* >4

[H(j)]L(ln) LA~y = P<y:1 =127, vo=1J, y1 = ln)

w4 )

A)

Allo)

+ assume minimal realization ¢° =

Al-1)

A(l_

n letters in the future Conditional on n letters in the past
current letter

(d, k,u,v, AV : 1 € [d)])

C )/ 1)
u 2)

H) — (1) . () . .. A(c%}
u’ d)

22



Quasi-HMM realization ( algorithm
d" k dn

am - HY  =pU

matrix rank = k

If U, V are of full column rank

Algorithm 1 (Rank decomposition)

HY =yVv’

23



Quasi-HMM realization ( algorithm

d" k A"
X Kk V!
am - HY  =pU
X A(]) X V/
HU) — U

Algorithm 1 (Rank decomposition)

Unique up to linear transformation

Require U V have column rank = k




Quasi-HMM realization ( informational complexity )

How large N needs to be so that U, V have full column rank = k?

W AL oo A1) T
W AL oL A2) )
U = , T ¢ RY **
A 4@ In practice, used as a

heuristic algorithm

v’(A(l) : ..A(l))/ i

’U/(A(l) : ..A(2))/ )
V p— . (T—l)/ c Rd X k

U/(A(d) : A(d))/

25



Quasi-HMM realization ( informational complexity )

How large N needs to be so that U, V have full column rank = k?

T ¢ R %k

Best hope:

n ~ O (log, k)

(T—l)/ c Rd”xk

26



Quasi-HMM realization ( informational complexity )

How large N needs to be so that U, V have full column rank = k?

w A L.

Theorem 1:
For almost all HMMs

n > 2log,(k)

guarantees U V full rank

27



Quasi-HMM realization ( informational complexity )

(d.k) = {6° . order k, alphabet size d} N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1)

(2)

Consider Bﬁi, k) the class of all HMMs with output alphabet size d and order k. There exists a measure
zero set £ € Bii*d k) such that for all the output process generated by HMMs in the set El'f:"d k_}\{.‘i'; the

information in S is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1
with

n > 2log, (k). (16)
For any (d, k) pair, randomly generated a HMM in @E‘d!k]. If for a given window size N = 2n + 1, the
matriz HY) € RY *4" constructed with SN is of the mazximal rank k, then for all output processes

generated by B?ri,k}r excluding a measure zero set, SN) is sufficient for computing the minimal quasi-
HMM realization.

28



Quasi-HMM realization ( informational complexity )

(d.k) = {6° . order k, alphabet size d} N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1)

(2)

Consider Bﬁi, k) the class of all HMMs with output alphabet size d and order k. There exists a measure
zero set £ € e?d,i:}f such that for all the output process generated by HMMs in the set El'i*djk_}\fi'; the

information in S is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1
with

n > 2log, (k). (16)

For any (d, k) pair, randomly generated a HMM in @E‘d!k]. If for a given window size N = 2n + 1, the
matriz H9) € RY %" constructed with SW) is be mazximal rank k, then for all output processes

generated by B?ri,k}r excluding a measure zero set, utticient for computing the minimal quasi-
HMM realization.

Polynomial computational complexity

O(d(d")*) ~ O(dk®)

29



Quasi-HMM realization ( informational complexity )

(d.k) = {6° . order k, alphabet size d} N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1)

(2)

+ For almost all HMM, min ordeét

Consider Bﬁi, k) the class of all HMMs with output alphabet size d and order k. There exists a measure
zero set £ € e?d,i:}f such that for all the output process generated by HMMs in the set eﬁ,—g,#}‘\g; the

information in S is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1
with

n > 2log, (k). (16)

For any (d, k) pair, randomly generated a HMM in @E‘d!k]. If for a given window size N = 2n + 1, the
matriz H9) € RY %" constructed with SW) is > mazimal rank k, then for all output processes

generated by B?ri,k}r excluding a measure zero set, tficient for computing the minimal quasi-
HMM realization.

Polynomial computational complexity

O(d(d")*) ~ O(dk®)

+ However, there exist information theoretic hard cases

30



Sketch of the proof

e We want to show for generic choices of Q and O, if N = 2n + 1 satisfies
n > 2log,(k), the matrices U,V have full column rank k.

e Since the minors of U and V are nonzero polynomials in the elements of
(Q and O, it is enough to show for some specific choice of ) and O.

o Q € R¥*k: the state shifting matrix
Qi—1,i=1, for2<i<k, and Q1 =1,

O € R%**. columns are independent unit-norm d-dimensional random
vectors.

The i-th column of U is given by

Upi) = OL,i) © - - - OLjign—1)-
e Show that with probability greater than 0 (random matrix, concentration
ineq)

/
G'm:gﬂ,(U U) > 0. 31



Minimal quasi-HMM realization ( summary )

+ Key to quasi-HMM realization:
v conditional independence,
v matrix decomposition, unique up to linear transformation

/ Minimal order is determined by the rank of H®

+ For almost all HMM, minimal quasi-HMM realization is easy
¢/ Informational : N ~ log,(k)

+ Computational : matrix factorization ~ O(dk®)

32



Minimal quasi-HMM realization ( summary )

+ Key to quasi-HMM realization:
v conditional independence,
v matrix decomposition, unique up to linear transformation

/ Minimal order is determined by the rank of H®

+ For almost all HMM, minimal quasi-HMM realization is easy
¢/ Informational : N ~ log,(k)

+ Computational : matrix factorization ~ O(dk®)
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Minimal quasi-HMM realization ( summary )

+ Key to quasi-HMM realization:
v conditional independence,
v matrix decomposition, unique up to linear transformation

/ Minimal order is determined by the rank of H®

+ For almost all HMM, minimal quasi-HMM realization is easy
¢/ Informational : N ~ log,(k)

+ Computational : matrix factorization ~ O(dk®)

v Smoothed analysis /S generic analysis

34







Minimal HMM realization

+ HMM conditional independence: probabilities in product form

36



Minimal HMM realization

+ HMM conditional independence: probabilities in product form

Yo, -+ -y Yn—1

Y1y -y Yn

{y—n7 I 7y—1} 1 {?JO, s 7yn—1} L0

37



Minimal HMM realization

+ HMM conditional independence: probabilities in product form

+ Exploit the uniqueness of tensor decomposition

Yy -

Yo, . - -

Yl

sy Yn—1

» Yn

SY-1r L {yo,. ..

7yn—1} Lo

.

-1}t L {yo} L {y1, ...

7yn} L0

38




Minimal HMM realization

+ Input:

SN =yp, ..} N=2n+1

+ Output: a minimal HMM model 6" = (d, &, Q, O)

+ Key:

Arrange SV into a three way tensor
M € Rd”xd”xd

Tensor rank decomposition
recover minimal HMM realization up to state relabeling

39



Preliminaries on Tensor

+ Tensor definition
v Multi-way array

v Multi-linear mapping

nAa

Mj, is.jss  J1 € |n4l,j2 € [nBl,j3 € [nc]

Compare to matrix Hj, j,

40



Preliminaries on Tensor

+ Tensor rank decomposition (CP/PARAFAC)

v Sum of rank one tensors [a® b ® c|;, j,.js = @i, bj,C;,
k
M=3 A @B oCy -4 © B © C

Y 4

ngc k k k

np

k
A _
v L

na

k
Compare to matrix rank decomposition F =7 Q V = Z Ui V[TZ]

41




Minimal HMM realization ( intuition )

+ Key: s®™arranged into a three way tensor M ¢ R4 *d"xd

ML(IZ?)v L(17), lo — P(ygn — 171”)

M relates to the model parameters via unigue tensor factorization

M=AQB®C

A, B € RY" >k and C € R*Fk
A:P(ylvy%'“vyn leO)
B = P(y—lvy—% o Y—m CEO)

C = P(907$0>

L2



Minimal HMM realization ( intuition )

+ Key: s™arranged into a three way tensor M ¢ R%" *4"xd

ML(IZ?)a L(17), lo — P(ygn — lT_Ln)

M relates to the model parameters via unigue tensor factorization

A, B € RY" >k and C € R*Fk
A:P(yl,yQ,...,yn a:o) A=(060(006(06...(0000)...)Q)Q)Q,

B = ]P)<y—17y—27 ey Y—n

C = P(yg, x()) C = Odiag(m)

43



Minimal HMM realization ( two-step approach )

d k k
L o @
M — R a < Q.0
dn

Two-step realization algorithm

k

X

d"

Tensor Linear

decomp Inversion




Minimal HMM realization ( identifiability )
N By S™M @y (1) MeABC Wy (2) ABCe(Q,0)

45



Minimal HMM realization ( identifiability )

N By s my» (1) MsABC Ey» (2) ABCs(Q,0)
Proposition 2: sufficient conditions for invertibility of (1)

krank(A) + krank(B) + krank(C) > 2k + 2,

L6



Minimal HMM realization ( identifiability )

N By sV my» (1) MeABC Ey» (2) ABCs(Q,0)
Theorem 3: sufficient conditions for invertibility of (1)

rank(A) = rank(B) =k

L7



Minimal HMM realization ( identifiability )

N By sV my» (1) MeABC Ey» (2) ABCs(Q,0)
Theorem 3: sufficient conditions for invertibility of (1)

rank(A) = rank(B) =k

Theorem:
For almost all HMMs

n > 2log,(k)

guarantees A,B full rank

48



Minimal HMM realization ( identifiability )

N By sV my» (1) MeABC By (2) ABC<s(Q,0)

Theorem 2: sufficient conditions for invertability of (2)

1. If A has full column rank

2. Or if O has full column rank

49



Minimal HMM realization ( algorithm )

N By sV my (1) MeABC B> (2) ABCs(Q,0)

Theorem 2: algorithm for inverting (2)

Obtain the observation probabilities by: Or. 4 = Cy. ;1/(€'Cl.;1), Vi € [K].
Given the matrix A, i.e., P(yT|zo), we can marginalize to obtain the matrices:

A = P(y, z0) AP =P(y[l:n— 1]|zo),

1. If A has full column rank: Q = (O ® E(”_l))_lA";

2. if O has full column rank: Q = Ot A,

50



Minimal HMM realization ( algorithm )
N By S™M @y (1) MeABC Wy (2) ABCe(Q,0)

+ Unique tensor decomposition to invert (1)

v In general tensor decomposition is hard
(Alternating least square)

+ Have efficient algorithm if

v A and B have full column rank < Algorithm 2
v Cisfull rank, A®Bis full rank and... < Algorithm 3
v The two cases apply to almost all HMMs for large enough N

51



Algorithm 2 ( Simultaneous diagonalization )

+ Take 2 random projections along the 3 dim



Algorithm 2 ( Simultaneous diagonalization )

A




Algorithm 2 ( Simultaneous diagonalization )

S AN -

AR

+ Take 2 random projections along the 34 dimension—> 2 matrix slices

+ Simultaneous diagonalization is unique almost surely



Algorithm 2 ( Simultaneous diagonalization )

S AN -

AR

+ Take 2 random projections along the 3 dimension
My = M(Ignxan, Lanxan,v1), Mo = MIgnxan,Ignxdan,V2).

MiM; ' = ANATY,

gl = pair up eigenvalues to get A, B
MyM ' =BA-1p-1, — PHTUPES S

solve linear eqn to obtain C



Algorithm 3 ( FOOBI )

A,B are rank degenerate

(1) M=ARBR(C ENTINCIN RNt

+ Degenerate case: Q is not full rank, setN =3




Algorithm 3 ( FOOBI )

A,B are rank degenerate

(1) M=ARBR(C ENTINCIN RNt

+ Degenerate case: Q is not full rank, setN =3
+ Matricization M along the 39 dim: M

)=,




Algorithm 3 ( FOOBI )

A,B are rank degenerate

(1) M=ARBR(C ENTINCIN RNt

+ Degenerate case: Q is not full rank, setN =3
+ Matricization M along the 39 dim: M

k

C

M=C®(A®B)



Algorithm 3 ( FOOBI )

A,B are rank degenerate

(1) M=ARBR(C ENTINCIN RNt

+ Degenerate case: Q is not full rank, setN =3
+ Matricization M along the 39 dim: M

_ f Can be converted to
M=C®(AO B) solving linear equations and

simultaneous diagonalization

rank decomposition M = UV’

such that: each column of V is a rank 1 matrix



Algorithm 3 ( correctness )

@(d k) = = {0" : order k, alphabet size d,Q is of rank r < k}

Theorem 4: Correctness of Algorithm 3

Pick a random instance from the model class @(d k,r)
If Algorithm 3 works correctly to recover the minimal HMM
Then it works for almost all instances in @(d k,r)

60



Minimal HMM realization ( summary )

+ Key to HMM realization:
v conditional independence: current, past and future

v tensor decomposition, unique up to column permutation

+ For almost all HMM, minimal HMM realization is easy
v Informational : N ~log,(k)
+ Computational : simultaneous diagonalization ~ O(dk®)

+ A class of degenerate cases can also be efficiently realized

61



Minimal HMM realization ( summary )

+ Key to HMM realization:
v conditional independence: current, past and future

v tensor decomposition, unique up to column permutation

+ For almost all HMM, minimal HMM realization is easy
v Informational : N ~log,(k)
+ Computational : simultaneous diagonalization ~ O(dk®)

+ A class of degenerate cases can also be efficiently realized
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summary & Discussions




Discussions

+ Hardness of worst cases
v Reduction to parity of noise

+ Learning via realization algorithms
v Statistical complexity

+ Ongoing works
v Smoothed analysis

v Agnostic learning
v HMM model reduction

64



Hardness results

+ We showed for almost all HMM, operator model and HMM model both
are easy to learn (poly time algorithm, poly sample complexity)

+ There exist information theoretic hard cases [Abe, Warmuth] [Kearns]

v

v

Given order k, cannot learn 8" = (d, k, @, O) in poly time, unless RP=NP

Unknown k, HMM is not efficiently PAC learnable, under noisy parity assumption

+ Example: reduction to parity of noise

v

v

v

Number of states = 4T-1, observation alphabet =2
required window size =T

There exists an 1] such that there is no efficient algorithm for learning parity
under uniform distribution in the PAC framework with classification noise 1

65



State = (Emission, Parity sum, Stage)
Skip stage for parity sum

(002) (003) (00s-1) (00s) (00T-1)
Uniform O.Si X
— (001) (102) (103) (10s-1) (10s) (10T-1) (OXT) —
— (101) i(O’IZ) (013) (0151)X(O1s) (017-1) (1xT) —
(112) (113) (11s-1) (11s) (1171-1)

(r,0,T+1) 5
/ Reset stage \
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HMM learning problems

<

Observe: sample sequences of the output process of an HMM

Goal:

Old art:
New art:

an operator / HMM model to fit the process

Maximal likelihood
estimator

EM ( Expectation-Maximization )

Spectral method (subspace id/ automata / tensor)

Statistics matching

67



HMM learning problems

+ Observe: sample sequences of the output process of an HMM

+ Goal: an operator / HMM model to fit the process
+ Oldart: EM

Observe Estimated model
sequences
{y(t)} wy 0" =(d,k,Q,0)

estimation

Parametric, need to know order k

Local optimality
Slow convergence



HMM learning problems

+ Observe: sample sequences of the output process of an HMM
+ Goal: an operator / HMM model to fit the process
+ New art: spectral method

Observe Statistics Estimated model
sequences
‘ Compute Realization (d,k,Q,0)
statistics algorithm = (d, k,u,v, AV : [ € [d])
{y(0)}

Identifiability
Uniqueness

69



MinimalHMM learning

+ Observe: sample sequences of the output process of an HMM
+ Goal: an operator / HMM model to fit the process
+ New art: spectral method

Observe Ctatictick Two step algorithm Estimated
sequences HMM
» Compute Tensor Linear
statistics ,
{y(t)} 0" = (d, k,Q,0)

/70



Sample complexity

77



Ongoing works

+ Smoothed analysis — perturbation based
Understand the polynomial time algorithm in practice
+ Agnostic HMM learning
If the underlying model is nota HMM...

which class of models have better fitting power?

+ HMM model reduction

/2
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Quasi-HMM realization ( correctness of the algorithm )

Proposition 1. Let 0° = (d, k,u,v, AY) : j € [d]) be a minimal order quasi real-
ization for the output process. If the matriz H ) has rank k, then the Algorithm
returns an operator model 0° that is equivalent to 6° up to linear transformation.

Assume the output process can be realized by an HMM model of order k™.

The order k" is always lower bounded by the order of the minimal order quasi
realization k.

+ Sketch of the proof

/4



Quasi-HMM realization ( correctness of the algorithm )

Proposition 1. Let 0° = (d, k,u,v, AY) : j € [d]) be a minimal order quasi real-
ization for the output process. If the matriz H ) has rank k, then the Algorithm
returns an operator model 0° that is equivalent to 6° up to linear transformation.

Assume the output process can be realized by an HMM model of order k™.

The order k" is always lower bounded by the order of the minimal order quasi
realization k.

+ Sketch of the proof

g0 — UV', U,V both of full rank k T0) — 1 a7
C AL A1) T - AL A T =T u

U B ’U,/A(1> “ . A(Q) _— ﬂ”g(l) L 2{(2) ’/I\J/ _ T_lv
I U/A(d>:..A(d) ) I ﬂ/g(d):,,g(@ ]
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Quasi-HMM realization ( correctness of the algorithm )

Proposition 1. Let 0° = (d, k,u,v, AY) : j € [d]) be a minimal order quasi real-
ization for the output process. If the matriz H ) has rank k, then the Algorithm
returns an operator model 0° that is equivalent to 6° up to linear transformation.

Assume the output process can be realized by an HMM model of order k™.
The order k" is always lower bounded by the order of the minimal order quasi
realization k.

+ Sketch of the proof Unique up to linear

transformation
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Quasi-HMM realization ( correctness of the algorithm )

Proposition 1. Let 0° = (d, k,u,v, AY) : j € [d]) be a minimal order quasi real-
ization for the output process. If the matriz H ) has rank k, then the Algorithm
returns an operator model 0° that is equivalent to 6° up to linear transformation.

Assume the output process can be realized by an HMM model of order k™.

The order k" is always lower bounded by the order of the minimal order quasi
realization k.

+ Sketch of the proof
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Algorithm 2 ( correctness )

Theorem 3: (1) M=A®B®C

If both A and B have full column rank, then with probability one (over
random projections), Algorithm 1 uniquely recovers the factors A, B, C' up to
state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).
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Algorithm 2 ( correctness )

Theorem 3: (1) M=A®B®C

If both A and B have full column rank, then with probability one (over
random projections), Algorithm 1 uniquely recovers the factors A, B, C' up to
state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

Q needs to be of full rank k
Increasing n can boost the rank of A,B
How large N=2n+1 needs to be?



Algorithm 2 ( correctness )

Theorem 3: (1) M=A®B®C

If both A and B have full column rank, then with probability one (over
random projections), Algorithm 1 uniquely recovers the factors A, B, C' up to
state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

@?i k) = {6" : order k, alphabet size d}

There exists a measure zero set £ € @( ik) such that for all HMMs in the set
(d w\E, for N =2n + 1, with

n > 2log,(k),

the matrices A and B have full column rank, thus S(V) is sufficient for learning
the minimal order HMM of the output process.




Algorithm 2 ( correctness )

Theorem 3: (1) M=A®B®C

If both A and B have full column rank, then with probability one (over
random projections), Algorithm 1 uniquely recovers the factors A, B, C' up to
state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

Polynomial computational complexity

B(d k) = = {0" : order k, alphabet O(d(d™)?) ~ O(dk®)

There exists a measure zero set £ € @( ik) at for all HMMs in the set
(d w\E, for N =2n + 1, with

n > 2log,(k),

the matrices A and B have full column rank, thus S) is sufficient for learning
the minimal order HMM of the output process.
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Minimal HMM realization ( identifiability )
N By sV my (1) MeABC B> (2) ABCs(Q,0)

Proposition 2: sufficient conditions for invertability of (1)

Consider the matrices A, B, C parameterized by a minimal realization (Q, O).
If the following deterministic conditions on the Kruskal rank are satisfied:

krank(A) 4+ krank(B) + krank(C') > 2k + 2, (1)

then M can be uniquely (up to common column permutation) decomposed into
A, B,C, and k can be determined thereby.
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Minimal HMM realization ( identifiability )
N By S™M @y (1) MeABC Wy (2) ABCe(Q,0)

Proposition 2: sufficient conditions for invertability of (1)

Consider the matrices A, B, C parameterized by a minimal realization (Q, O).
If the following deterministic conditions on the Kruskal rank are satisfied:

krank(A) + krank(B) + krank(C) > 2k + 2, (1)

then M can be uniquely (up to common column permutation) decomposed into
A, B,C, and k can be determined thereby.




Algorithm 4 (random instance check )
@&k,r) = {0" : order k, alphabet size d,Q is of rank r < k}

1. Randomly pick an HMM model (d, k, @, O) € @?d,k,r)°

2. Construct matrices A = OQ, B=0Q, C = ODiag(m),
where 7 is the stationary distribution, and Q = Diag(m)Q’Diag(m)~!.

3. Run Algorithm 2.a with input M = A® B® C.

4. Return “yes” if the algorithm recovers A, B,C' up to state permutation,
and “no” otherwise.



Algorithm 4 (random instance check )
@?d,k:,r) = {0" : order k, alphabet size d,Q is of rank r < k}

1. Randomly pick an HMM model (d, k, @, O) € @?d,k,r)°

2. Construct matrices A = OQ, B=0Q, C = ODiag(m),
where 7 is the stationary distribution, and Q = Diag(m)Q’Diag(m)~!.

3. Run Algorithm 2.a with input M = A® B® C.

4. Return “yes” if the algorithm recovers A, B,C' up to state permutation,
and “no” otherwise.

Theorem 4: Correctness of Algorithm 3

For given d > k and n = 1, if Algorithm 2.b returns “yes”, then there exists
a measure zero set £ € @?d " k) such that Algorithm 2.a can identify all minimal

HMM realizations in the set @?d . k)\é’ .
Moreover, if the latter is true, Algorithm 2.b returns “yes” with probability
1. Theorem 1 (2) can be applied to recover (@, O) for this class of HMMs.
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Minimal HMM realization ( summary )
N By S™M @y (1) MeABC Wy (2) ABCe(Q,0)

+ ldentifiability: if (1) (2) are bijective mappings

v How large N is so that the minimal HMM is identifiable from S(*)?

+ Algorithms: efficiently invert (1) (2)
v For(1): Algorithm 2 (Simultaneous diagnolization)
If Q is full rank
Algorithm 3 (Foobi)

If O has full column rank, and check a random
iInstance

v For(2): Theorem 2 (Linear inversion)

If Q or O has full column rank
87



