Minimal Realization Problems for

Hidden Markov Models

Observe stationary random process $y(t) \in [d] = \{1, 2, ..., d\}$

 The random process is characterized by the joint distribution (Probabilities of strings of any length N)

$$\mathcal{S}^{(\infty)} = \left\{ \mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) : \quad \forall \mathbf{l}_1^N \in [d]^N, \ \forall N \in \mathbb{Z} \right\}$$

Observe stationary random process $y(t) \in [d] = \{1, 2, ..., d\}$

 The random process is characterized by the joint distribution (Probabilities of strings of any length N)

$$\mathcal{S}^{(\infty)} = \left\{ \mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) : \quad \forall \mathbf{l}_1^N \in [d]^N, \ \forall N \in \mathbb{Z} \right\}$$

Can we find a finite state system description of the process?

Randomness rightarrow? rightarrow Observed random process $y(t) \in [d] = \{1, 2, ..., d\}$

+ Assume that the process can be described by a finite state system

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

$$w_{t+1} = A^{(l_t)} w_t, \quad w_0 = v,$$

$$z_t = u' w_t, \quad \forall \mathbf{l}_1^N \in [d]^N, \forall N \in \mathbb{Z}$$

$$\mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) = z_N(\mathbf{l}_1^N)$$

= $u' A^{(l_n)} \dots A^{(l_1)} A^{(l_{-1})} \dots A^{(l_{-n})} v$

Randomness ? Observed random process $y(t) \in [d] = \{1, 2, ..., d\}$

+ Assume that the process can be described by a finite state system

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

 $w_{t+1} = A^{(l_t)} w_t, \quad w_0 = v,$ $z_t = u' w_t,$

State has no physical meaning $w_t \in \mathbb{R}^k$ $orall \mathbf{l}_1^N \in [d]^N, orall N \in \mathbb{Z}$

$$\mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) = z_N(\mathbf{l}_1^N)$$

= $u' A^{(l_n)} \dots A^{(l_1)} A^{(l_{-1})} \dots A^{(l_{-n})} v$

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

• Multi-linear system $w_{t+1} = A^{(l_t)}w_t$, $w_0 = v$,

$$z_t = u'w_t,$$

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

- ▲ Multi-linear system w_{t+1} = A^(l_t)w_t, w₀ = v,
 z_t = u'w_t,
- Quasi- HMM realization

If
$$\mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) = z_N(\mathbf{l}_1^N)$$
 is a valid joint distribution
and $u' \left[\sum_{j \in [d]} A^{(j)} \right] = u', \quad \left[\sum_{j \in [d]} A^{(j)} \right] v = v.$ (stationarity)

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

- Multi-linear system $w_{t+1} = A^{(l_t)}w_t$, $w_0 = v$, $z_t = u'w_t$,
- Quasi- HMM realization

If
$$\mathbb{P}(y_1 = l_1, \dots, y_N = l_N) = z_N(\mathbf{l}_1^N)$$
 is a valid joint distribution
and $u'\left[\sum_{j \in [d]} A^{(j)}\right] = u', \quad \left[\sum_{j \in [d]} A^{(j)}\right] v = v.$ (stationarity)

• HMM realization If in addition $v = \mathbf{e}_k, \quad u \in \mathbb{R}^k_+, \sum_i u_i = 1,$ $A^{(j)} \in [0, 1]^{k \times k}, \forall j \in [d],$

$$\theta = (d, k, u \in \mathbb{R}^k, v \in \mathbb{R}^k, A^{(l)} \in \mathbb{R}^{k \times k} : l \in [d])$$

- Multi-linear system $w_{t+1} = A^{(l_t)}w_t$, $w_0 = v$, $z_t = u'w_t$,
- Quasi- HMM realization

If
$$\mathbb{P}(y_1 = l_1, \dots, y_N = l_N) = z_N(\mathbf{l}_1^N)$$
 is a valid joint distribution
and $u'\left[\sum_{j \in [d]} A^{(j)}\right] = u', \quad \left[\sum_{j \in [d]} A^{(j)}\right] v = v.$ (stationarity)

 ★ HMM realization If in addition
 $v = \mathbf{e}_k$, $u \in \mathbb{R}^k_+$, $\sum_i u_i = 1$, $A^{(j)} \in [0,1]^{k \times k}$, $\forall j \in [d]$,
 1-1 mapping to Transition: $Q \in \mathbb{R}^{k \times k}$.
 Observation: $O \in \mathbb{R}^{d \times k}$

Realization problems

+ Input: probabilities of length N strings of an HMM

$$\mathcal{S}^{(N)} = \{ \mathbb{P}(y_1 = l_1, \cdots, y_N = l_N) : \forall \mathbf{l}_1^N \in [d]^N \}$$

◆ Output:
 ✓ (d, k, u ∈ ℝ^k, v ∈ ℝ^k, A^(l) ∈ ℝ^{k×k} : l ∈ [d])
 ✓ Minimal order quasi-HMM realization
 ✓ Minimal order HMM realization

$$\mathcal{S}^{(\infty)} = \left\{ \mathbb{P}(\mathbf{y}_1^N = \mathbf{l}_1^N) : \quad \forall \mathbf{l}_1^N \in [d]^N, \ \forall N \in \mathbb{Z} \right\}$$
$$\mathbb{P}(\mathbf{y}_1^N = \mathbf{l}_1^N) = u' A^{(l_1)} A^{(l_1)} \dots A^{(l_N)} v, \quad \forall \mathbf{l}_1^N \in [d]^N$$

Realization problems

+ Informational complexity

✓ When is the minimal model identifiable from $S^{(N)}$? window size N =?

+ Computational complexity

✓ Can we compute the minimal realization with efficient algorithms?

+ Statistical complexity

✓ Are the algorithms robust to estimation noise?

In general, learning HMMs is hard

Realization problems

+ Informational complexity

✓ When is the minimal model identifiable from $S^{(N)}$? window size N =?

Main contribution 1:

Main contribution 2

+ Computational complexity

+ Statistical complexity

✓ Are the algorithms robust to estimation noise?

In general, learning HMMs is hard

Quasi-HMM realization

Quasi-HMM realization

- + Input: probabilities of length N = 2n + 1 strings $y_{-n}, \dots, y_{-1} \ y_0 \ y_1, \dots, y_n$ $S^{(N)} = \{\mathbb{P}_{y_{-n}}, \dots, y_n\}$
- Output: a minimal quasi-HMM realization

$$\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$$

+ Key:

Arrange
$$S^{(N)} = \{\mathbb{P}_{y_{-n}, \dots, y_n}\}$$
 into matrices:
 $H^{(0)}, \{H^{(j)} : j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$

Matrix rank decomposition of $H^{(0)}$ equivalent minimal quasi realization up to linear transformation

Complexity?

+ Input: $\mathcal{S}^{(N)}$ arranged into $H^{(0)}, \{H^{(j)}: j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$

* assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

Enumerate all length n strings: $L(\mathbf{l}_1^n) = (l_1 - 1)d^{n-1} + (l_2 - 1)d^{n-2} + \dots + l_n, \quad \forall \mathbf{l}_1^n = [d]_5^n$

+ Input: $\mathcal{S}^{(N)}$ arranged into $H^{(0)}, \{H^{(j)}: j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$

$$\begin{split} [H^{(0)}]_{L(\mathbf{l}_{1}^{n}),L(\mathbf{l}_{-1}^{-n})} &= \mathbb{P}\Big(\mathbf{y}_{0}^{n-1} = \mathbf{l}_{1}^{n}, \ \mathbf{y}_{-1}^{-n} = \mathbf{l}_{-1}^{-n}\Big) \\ &= u'A^{(l_{n})} \dots A^{(l_{1})}A^{(l_{-1})} \dots A^{(l_{-n})}v \\ \end{split}$$
n letters now and future

+ assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

Enumerate all length n strings: $L(\mathbf{l}_1^n) = (l_1 - 1)d^{n-1} + (l_2 - 1)d^{n-2} + \dots + l_n, \quad \forall \mathbf{l}_1^n = [d]_6^n$

+ Input: $\mathcal{S}^{(N)}$ arranged into $H^{(0)}, \{H^{(j)}: j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$

$$\begin{split} [H^{(0)}]_{L(\mathbf{l}_{1}^{n}),L(\mathbf{l}_{-1}^{-n})} &= \mathbb{P}\Big(\mathbf{y}_{0}^{n-1} = \mathbf{l}_{1}^{n}, \ \mathbf{y}_{-1}^{-n} = \mathbf{l}_{-1}^{-n}\Big) \\ &= u'A^{(l_{n})} \dots A^{(l_{1})}A^{(l_{-1})} \dots A^{(l_{-n})}v \\ \end{split}$$
n letters now and future

* assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

$$H^{(0)} = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} \begin{bmatrix} A^{(1)} \cdots A^{(1)}v, \cdots, A^{(d)} \cdots A^{(d)}v \end{bmatrix}$$

Enumerate all length n strings: $L(\mathbf{l}_{1}^{n}) = (l_{1}-1)d^{n-1} + (l_{2}-1)d^{n-2} + \dots + l_{n}, \quad \forall \mathbf{l}_{1}^{n} = [d]_{7}^{n}$

+ Input: $\mathcal{S}^{(N)}$ arranged into $H^{(0)}, \{H^{(j)}: j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$

$$\begin{split} [H^{(0)}]_{L(\mathbf{l}_{1}^{n}),L(\mathbf{l}_{-1}^{-n})} &= \mathbb{P}\Big(\mathbf{y}_{0}^{n-1} = \mathbf{l}_{1}^{n}, \ \mathbf{y}_{-1}^{-n} = \mathbf{l}_{-1}^{-n}\Big) \\ &= u'A^{(l_{n})} \dots A^{(l_{1})}A^{(l_{-1})} \dots A^{(l_{-n})}v \\ \end{split}$$
n letters now and future

+ assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

$$H^{(0)} = \begin{bmatrix} u' & & & & & & \\ u' & & & & & \\ & & U & & \\ u' & & & & & \\ u' & & & & & & \end{bmatrix} \begin{bmatrix} A^{(1)} \cdots A & V' & {}^{l} \cdots A^{(d)} v \end{bmatrix}$$

Enumerate all length n strings: $L(\mathbf{l}_{1}^{n}) = (l_{1}-1)d^{n-1} + (l_{2}-1)d^{n-2} + \dots + l_{n}, \quad \forall \mathbf{l}_{1}^{n} = [d]_{\mathbf{R}}^{n}$

+ Input: $\mathcal{S}^{(N)}$ arranged into $H^{(0)}, \{H^{(j)}: j \in [d]\} \in \mathbb{R}^{d^n \times d^n}$ $[H^{(j)}]_{L(\mathbf{l}_1^n), L(\mathbf{l}_{-1}^{-n})} = \mathbb{P}\left(\mathbf{y}_{-1}^{-n} = \mathbf{l}_{-1}^{-n}, y_0 = j, \mathbf{y}_1^n = \mathbf{l}_1^n\right),$

* assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

+ assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

* assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

$$H^{(j)} = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} A^{(j)} \begin{bmatrix} A^{(1)} \cdots A^{(1)}v, \cdots, A^{(d)} \cdots A^{(d)}v \end{bmatrix}$$

* assume minimal realization $\theta^o = (d, k, u, v, A^{(l)} : l \in [d])$

$$H^{(j)} = \begin{bmatrix} u' & & & & & & & & & \\ u' & & & & & & & \\ u' & & & & & & & \\ u' & & & & & & & \\ u' & & & & & & & \\ \end{bmatrix} A^{(j)} A^{(1)} \cdot V' A^{(d)} \cdots A^{(d)} v \Big]$$

Algorithm 1 (Rank decomposition) $H^{(0)} = UV'$

Algorithm 1 (Rank decomposition)

 $H^{(0)} = UV'$ $\widetilde{A}^{(j)} = U^{\dagger}H^{(j)}(V^{\dagger})', \quad \forall j \in [d]$ $\widetilde{u} = U'\mathbf{e}$ $\widetilde{v} = V'\mathbf{e}$

Unique up to linear transformation

Require U V have column rank = k

How large N needs to be so that U, V have full column rank = k?

$$U = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} T \in \mathbb{R}^{d^{n} \times k}$$

In practice, used as a heuristic algorithm
$$V = \begin{bmatrix} v'(A^{(1)} \cdots A^{(1)})' \\ v'(A^{(1)} \cdots A^{(2)})' \\ \vdots \\ v'(A^{(d)} \cdots A^{(d)})' \end{bmatrix} (T^{-1})' \in \mathbb{R}^{d^{n} \times k}$$

How large N needs to be so that U, V have full column rank = k?

$$U = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} T \in \mathbb{R}^{d^n \times k}$$

Best hope:
$$n \sim \mathcal{O}(\log_d k)$$
$$V = \begin{bmatrix} v'(A^{(1)} \cdots A^{(1)})' \\ v'(A^{(1)} \cdots A^{(2)})' \\ \vdots \\ v'(A^{(d)} \cdots A^{(d)})' \end{bmatrix} (T^{-1})' \in \mathbb{R}^{d^n \times k}$$

How large N needs to be so that U, V have full column rank = k?

$$U = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} T \in \mathbb{R}^{d^{n} \times k}$$

Theorem 1:
For almost all HMMs
$$\mathbf{n} > 2 \log_{\mathbf{d}}(\mathbf{k})$$

guarantees U V full rank

 $\Theta^o_{(d,k)} = \{\theta^o : \text{ order } k, \text{ alphabet size } d\}$ N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1) Consider $\Theta_{(d,k)}^h$, the class of all HMMs with output alphabet size d and order k. There exists a measure zero set $\mathcal{E} \in \Theta_{(d,k)}^h$, such that for all the output process generated by HMMs in the set $\Theta_{(d,k)}^h \setminus \mathcal{E}$, the information in $\mathcal{S}^{(N)}$ is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1 with

$$n > 2\log_d(k). \tag{16}$$

(2) For any (d,k) pair, randomly generated a HMM in $\Theta_{(d,k)}^h$. If for a given window size N = 2n + 1, the matrix $H^{(0)} \in \mathbb{R}^{d^n \times d^n}$ constructed with $\mathcal{S}^{(N)}$ is of the maximal rank k, then for all output processes generated by $\Theta_{(d,k)}^o$, excluding a measure zero set, $\mathcal{S}^{(N)}$ is sufficient for computing the minimal quasi-HMM realization.

 $\Theta^o_{(d,k)} = \{\theta^o : \text{ order } k, \text{ alphabet size } d\}$ N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1) Consider $\Theta_{(d,k)}^h$, the class of all HMMs with output alphabet size d and order k. There exists a measure zero set $\mathcal{E} \in \Theta_{(d,k)}^h$, such that for all the output process generated by HMMs in the set $\Theta_{(d,k)}^h \setminus \mathcal{E}$, the information in $\mathcal{S}^{(N)}$ is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1 with

$$n > 2\log_d(k).$$

(16)

(2) For any (d, k) pair, randomly generated a HMM in $\Theta_{(d,k)}^h$. If for a given window size N = 2n + 1, the matrix $H^{(0)} \in \mathbb{R}^{d^n \times d^n}$ constructed with $\mathcal{S}^{(N)}$ is the maximal rank k, then for all output processes generated by $\Theta_{(d,k)}^o$, excluding a measure zero set, sufficient for computing the minimal quasi-HMM realization.

Polynomial computational complexity

 $\mathcal{O}(d(d^n)^3) \sim \mathcal{O}(dk^6)$

 $\Theta^o_{(d,k)} = \{\theta^o : \text{ order } k, \text{ alphabet size } d\}$ N = 2n + 1

Theorem 1 (Information complexity for quasi-HMM realization).

(1) Consider $\Theta_{(d,k)}^h$, the class of all HMMs with output alphabet size d and order k. There exists a measure zero set $\mathcal{E} \in \Theta_{(d,k)}^h$, such that for all the output process generated by HMMs in the set $\Theta_{(d,k)}^h \setminus \mathcal{E}$, the information in $\mathcal{S}^{(N)}$ is sufficient for computing the minimal quasi-HMM realization, for N = 2n + 1 with

$$n > 2\log_d(k).$$

(16)

(2) For any (d,k) pair, randomly generated a HMM in $\Theta_{(d,k)}^h$. If for a given window size N = 2n + 1, the matrix $H^{(0)} \in \mathbb{R}^{d^n \times d^n}$ constructed with $\mathcal{S}^{(N)}$ is the maximal rank k, then for all output processes generated by $\Theta_{(d,k)}^o$, excluding a measure zero set, sufficient for computing the minimal quasi-HMM realization.

Polynomial computational complexity

 $\mathcal{O}(d(d^n)^3) \sim \mathcal{O}(dk^6)$

- For almost all HMM, min order quasi realization is easy
- + However, there exist information theoretic hard cases

Sketch of the proof

- We want to show for generic choices of Q and O, if N = 2n + 1 satisfies $n > 2 \log_d(k)$, the matrices U, V have full column rank k.
- Since the minors of U and V are nonzero polynomials in the elements of Q and O, it is enough to show for some specific choice of Q and O.
- $Q \in \mathbb{R}^{k \times k}$: the state shifting matrix

$$Q_{i-1,i} = 1$$
, for $2 \le i \le k$, and $Q_{k,1} = 1$,

 $O \in \mathbb{R}^{d \times k}$: columns are independent unit-norm d-dimensional random vectors.

The *i*-th column of U is given by

$$U_{[:,i]} = O_{[:,i]} \odot \dots O_{[:,i+n-1]}.$$

• Show that with probability greater than 0 (random matrix, concentration ineq)

$$\sigma_{min}(U'U) > 0.$$
31

Minimal quasi-HMM realization (summary)

- Key to quasi-HMM realization:
 - ✓ conditional independence,
 - ✓ matrix decomposition, unique up to linear transformation
 - \checkmark Minimal order is determined by the rank of $H^{(0)}$

+ For **almost all** HMM, minimal quasi-HMM realization is easy

- \checkmark Informational: $N \sim \log_d(k)$
- Computational : matrix factorization

 $\mathcal{O}(dk^6)$

Minimal quasi-HMM realization (summary)

- Key to quasi-HMM realization:
 - ✓ conditional independence,
 - ✓ matrix decomposition, unique up to linear transformation
 - \checkmark Minimal order is determined by the rank of $H^{(0)}$

+ For almost all HMM, minimal quasi-HMM realization is easy

- Informational :
- Computational : matrix factorization

 $N \sim \log_d(k)$

 $\mathcal{O}(dk^6)$

Minimal quasi-HMM realization (summary)

- Key to quasi-HMM realization:
 - ✓ conditional independence,
 - ✓ matrix decomposition, unique up to linear transformation
 - \checkmark Minimal order is determined by the rank of $H^{(0)}$

+ For **almost all** HMM, minimal quasi-HMM realization is easy

- Informational :
- Computational : matrix factorization

 $N \sim \log_d(k)$ $\mathcal{O}(dk^6)$

Smoothed analysis VS generic analysis

Minimal HMM realization

Minimal HMM realization

+ HMM conditional independence : probabilities in product form
Minimal HMM realization

+ HMM conditional independence : probabilities in product form

$$\begin{array}{c} y_{-n}, \dots, y_{-1} \\ y_{0}, \dots, y_{n-1} \\ H^{(0)} \\ y_{0} = j \\ y_{1}, \dots, y_{n} \\ y_{1}, \dots, y_{n} \\ H^{(j)} \\ \{y_{-n}, \dots, y_{-1}\} \perp \{y_{0}, \dots, y_{n-1}\} \left| x_{0} \right. \end{array}$$

Minimal HMM realization

- + HMM conditional independence : probabilities in product form
- Exploit the uniqueness of tensor decomposition

Minimal HMM realization

- Input: $S^{(N)} = \{ \mathbb{P}_{y_{-n}, \dots, y_n} \}$ N = 2n + 1
- + **Output**: a minimal HMM model $\theta^h = (d, k, Q, O)$
- + Key:

Arrange $\mathcal{S}^{(N)}$ into a three way tensor $M \in \mathbb{R}^{d^n \times d^n \times d}$

Tensor rank decomposition recover minimal HMM realization up to state relabeling

Preliminaries on Tensor

- Tensor definition
 - ✓ Multi-way array
 - ✓ Multi-linear mapping

 $M_{j_1,j_2,j_3}, \quad j_1 \in [n_A], j_2 \in [n_B], j_3 \in [n_C]$ Compare to matrix H_{j_1,j_2}

Preliminaries on Tensor

- Tensor rank decomposition (CP/PARAFAC)
 - \checkmark Sum of rank one tensors $[\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}]_{j_1, j_2, j_3} = a_{j_1} b_{j_2} c_{j_3}$

Compare to matrix rank decomposition $H = U \otimes V = \sum_{i=1}^{n} U_{[:,i]} V_{[:,i]}^{\top}$

Minimal HMM realization (intuition)

+ Key: $\mathcal{S}^{(N)}$ arranged into a three way tensor $M \in \mathbb{R}^{d^n \times d^n \times d}$

$$M_{L(\mathbf{l}_{-1}^{-n}), L(\mathbf{l}_{1}^{n}), l_{0}} = \mathbb{P}\left(\mathbf{y}_{-n}^{n} = \mathbf{l}_{-n}^{n}\right)$$

M relates to the model parameters via unique tensor factorization

$$M = A \otimes B \otimes C$$

$$A, B \in \mathbb{R}^{d^n \times k} \text{ and } C \in \mathbb{R}^{d \times k}$$
$$A = \mathbb{P}\left(y_1, y_2, \dots, y_n \middle| x_0\right)$$
$$B = \mathbb{P}\left(y_{-1}, y_{-2}, \dots, y_{-n} \middle| x_0\right)$$
$$C = \mathbb{P}\left(y_0, x_0\right)$$

Minimal HMM realization (intuition)

+ Key: $\mathcal{S}^{(N)}$ arranged into a three way tensor $M \in \mathbb{R}^{d^n \times d^n \times d}$

$$M_{L(\mathbf{l}_{-1}^{-n}), L(\mathbf{l}_{1}^{n}), l_{0}} = \mathbb{P}\left(\mathbf{y}_{-n}^{n} = \mathbf{l}_{-n}^{n}\right)$$

M relates to the model parameters via unique tensor factorization

$$M = A \otimes B \otimes C$$

$$A, B \in \mathbb{R}^{d^{n} \times k} \text{ and } C \in \mathbb{R}^{d \times k}$$

$$A = \mathbb{P}\Big(y_{1}, y_{2}, \dots, y_{n} \middle| x_{0}\Big) \qquad A = \underbrace{(O \odot (O \odot (O \odot \dots (O \odot O \underbrace{Q}) \dots)Q)Q)Q}_{n},$$

$$B = \mathbb{P}\Big(y_{-1}, y_{-2}, \dots, y_{-n} \middle| x_{0}\Big) \qquad B = \underbrace{(O \odot (O \odot (O \odot \dots (O \odot O \underbrace{Q}) \dots)Q)Q)Q}_{n},$$

$$C = \mathbb{P}\Big(y_{0}, x_{0}\Big) \qquad C = Odiag(\pi)$$

Minimal HMM realization (two-step approach)

Two-step realization algorithm

Minimal HMM realization (identifiability)

 $N \implies \mathcal{S}^{(N)} \implies (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Minimal HMM realization (identifiability) $N \longrightarrow S^{(N)} \longrightarrow (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Proposition 2: sufficient conditions for invertibility of (1)

 $krank(A) + krank(B) + krank(C) \ge 2k + 2,$

Minimal HMM realization (identifiability) $N \longrightarrow S^{(N)} \longrightarrow (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Theorem 3: sufficient conditions for invertibility of (1)

$$rank(A) = rank(B) = k$$

Theorem 3: sufficient conditions for invertibility of (1)

$$rank(A) = rank(B) = k$$

Theorem: For almost all HMMs $n > 2\log_d(k)$ guarantees A,B full rank

Theorem 2: sufficient conditions for invertability of (2)

1. If A has full column rank

2. Or if O has full column rank

Minimal HMM realization (algorithm) $N \longrightarrow S^{(N)} \longrightarrow (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Theorem 2: algorithm for inverting (2)

Obtain the observation probabilities by: $O_{[:,i]} = C_{[:,i]}/(\mathbf{e}'C_{[:,i]}), \quad \forall i \in [k].$ Given the matrix A, i.e., $\mathbb{P}(\mathbf{y}_1^n | x_0)$, we can marginalize to obtain the matrices:

$$\widetilde{A}^{(1)} = \mathbb{P}(y_1 | x_0) \quad \widetilde{A}^{(n-1)} = \mathbb{P}(\mathbf{y}[1:n-1] | x_0),$$

- 1. If A has full column rank: $Q = (O \odot \widetilde{A}^{(n-1)})^{-1}A';$
- 2. if O has full column rank: $Q = O^{\dagger} \widetilde{A}^{(1)}$.

Minimal HMM realization (algorithm)

 $N \implies \mathcal{S}^{(N)} \implies (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

- Unique tensor decomposition to invert (1)
 - In general tensor decomposition is hard (Alternating least square)
- Have efficient algorithm if
 - ✓ A and B have full column rank
 - \checkmark C is full rank, A \odot B is full rank and ... \leftarrow Algorithm 3
 - ✓ The two cases apply to *almost all* HMMs for large enough N

← Algorithm 2

51

+ Take 2 random projections along the 3rd dim

- + Take 2 random projections along the 3^{rd} dimension \rightarrow 2 matrix slices
- Simultaneous diagonalization is unique almost surely

• Take 2 random projections along the 3rd dimension $\widetilde{M}_1 = M(I_{d^n \times d^n}, I_{d^n \times d^n}, \mathbf{v}_1), \quad \widetilde{M}_2 = M(I_{d^n \times d^n}, I_{d^n \times d^n}, \mathbf{v}_2).$

> $\widetilde{\widetilde{M}}_{1}\widetilde{\widetilde{M}}_{2}^{-1} = A\Lambda A^{-1},$ $\widetilde{\widetilde{M}}_{2}\widetilde{\widetilde{M}}_{1}^{-1} = B\Lambda^{-1}B^{-1}.$ \Rightarrow pair up eigenvalues to get A, Bsolve linear eqn to obtain C

(1) $M = A \otimes B \otimes C$

A,B are rank degenerate But if A • B has full column rank

• Degenerate case: Q is not full rank, set N = 3

(1) $M = A \otimes B \otimes C$

A,B are rank degenerate But if A • B has full column rank

- Degenerate case: Q is not full rank, set N = 3
- + Matricization *M* along the 3^{rd} dim: \overline{M}

(1) $M = A \otimes B \otimes C$

A,B are rank degenerate But if A \odot B has full column rank

- Degenerate case: Q is not full rank, set N = 3
- + Matricization *M* along the 3^{rd} dim: \overline{M}

 $\overline{M} = C \otimes (A \odot B)'$

(1) $M = A \otimes B \otimes C$

A,B are rank degenerate But if A \odot B has full column rank

- Degenerate case: Q is not full rank, set N = 3
- + Matricization *M* along the 3^{rd} dim: \overline{M}

 $\overline{M} = C \otimes (A \odot B)'$

Can be converted to solving linear equations and simultaneous diagonalization

rank decomposition $\overline{M} = UV'$ such that: each column of V is a rank 1 matrix

Algorithm 3 (correctness)

 $\Theta_{(d,k,r)}^{h} = \{\theta^{h} : \text{ order } k, \text{ alphabet size } d, Q \text{ is of rank } r < k\}$

Theorem 4: Correctness of Algorithm 3

Pick a random instance from the model class $\Theta_{(d,k,r)}^{h}$ If Algorithm 3 works correctly to recover the minimal HMM Then it works for almost all instances in $\Theta_{(d,k,r)}^{h}$

Minimal HMM realization (summary)

- Key to HMM realization:
 - ✓ conditional independence: current, past and future
 - ✓ tensor decomposition, unique up to column permutation

- + For almost all HMM, minimal HMM realization is easy
 - ✓ Informational: $N \sim \log_d(k)$
 - \checkmark Computational : simultaneous diagonalization $\mathcal{O}(dk^6)$
- A class of degenerate cases can also be efficiently realized

Minimal HMM realization (summary)

- Key to HMM realization:
 - conditional independence: current, past and future
 - ✓ tensor decomposition, unique up to column permutation

- + For almost all HMM, minimal HMM realization is easy
 - ✓ Informational: $N \sim \log_d(k)$
 - ${\cal O}$ Computational : simultaneous diagonalization ${\cal O}(dk^6)$
- A class of degenerate cases can also be efficiently realized

Summary & Discussions

Discussions

- Hardness of worst cases
 - Reduction to parity of noise
- + Learning via realization algorithms
 - Statistical complexity
- Ongoing works
 - ✓ Smoothed analysis
 - ✓ Agnostic learning
 - V HMM model reduction

Hardness results

- We showed for almost all HMM, operator model and HMM model both are easy to learn (poly time algorithm, poly sample complexity)
- There exist information theoretic hard cases [Abe,Warmuth] [Kearns]
 - \checkmark Given order k, cannot learn $\theta^h = (d, k, Q, O)$ in poly time, unless RP=NP
 - ✓ Unknown k, HMM is not efficiently PAC learnable, under noisy parity assumption
- + Example: reduction to parity of noise
 - \checkmark Number of states = 4T-1, observation alphabet = 2
 - \checkmark required window size = T
 - \checkmark There exists an η such that there is no efficient algorithm for learning parity under uniform distribution in the PAC framework with classification noise η

State = (Emission, Parity sum, Stage)

Skip stage for parity sum

HMM learning problems

- + Observe: sample sequences of the output process of an HMM
- + Goal: an operator / HMM model to fit the process

Statistics matching

HMM learning problems

- + Observe: sample sequences of the output process of an HMM
- + Goal: an operator / HMM model to fit the process
- + Old art: EM

HMM learning problems

- + Observe: sample sequences of the output process of an HMM
- + Goal: an operator / HMM model to fit the process
- New art: spectral method

MinimalHMM learning

- + Observe: sample sequences of the output process of an HMM
- + Goal: an operator / HMM model to fit the process
- New art: spectral method

Sample complexity

Ongoing works

- Smoothed analysis perturbation based
 Understand the polynomial time algorithm in practice
- Agnostic HMM learning

If the underlying model is not a HMM...

which class of models have better fitting power?

HMM model reduction
Appendix

Quasi-HMM realization (correctness of the algorithm)

Proposition 1. Let $\theta^o = (d, k, u, v, A^{(j)} : j \in [d])$ be a minimal order quasi realization for the output process. If the matrix $H^{(0)}$ has rank k, then the Algorithm returns an operator model $\tilde{\theta}^o$ that is equivalent to θ^o up to linear transformation. Assume the output process can be realized by an HMM model of order k^h . The order k^h is always lower bounded by the order of the minimal order quasi realization k.

Sketch of the proof

Quasi-HMM realization (correctness of the algorithm)

Proposition 1. Let $\theta^{o} = (d, k, u, v, A^{(j)} : j \in [d])$ be a minimal order quasi realization for the output process. If the matrix $H^{(0)}$ has rank k, then the Algorithm returns an operator model $\tilde{\theta}^{o}$ that is equivalent to θ^{o} up to linear transformation. Assume the output process can be realized by an HMM model of order k^{h} . The order k^{h} is always lower bounded by the order of the minimal order quasi realization k.

Sketch of the proof

 $H^{(0)} = UV', \quad U, V$ both of full rank k

$$U = \begin{bmatrix} u'A^{(1)}\cdots A^{(1)} \\ u'A^{(1)}\cdots A^{(2)} \\ \vdots \\ u'A^{(d)}\cdots A^{(d)} \end{bmatrix} T = \begin{bmatrix} \widetilde{u}'\widetilde{A}^{(1)}\cdots \widetilde{A}^{(1)} \\ \widetilde{u}'\widetilde{A}^{(1)}\cdots \widetilde{A}^{(2)} \\ \vdots \\ \widetilde{u}'\widetilde{A}^{(d)}\cdots \widetilde{A}^{(d)} \end{bmatrix}$$

$$\widetilde{A}^{(j)} = T^{-1}AT$$
$$\widetilde{u} = T'u$$
$$\widetilde{v} = T^{-1}v$$

$$V' = T^{-1} \left[A^{(1)} \cdots A^{(1)} v, \cdots, A^{(d)} \cdots A^{(d)} v \right] = \left[\widetilde{A}^{(1)} \cdots \widetilde{A}^{(1)} v, \cdots, \widetilde{A}^{(d)} \cdots \widetilde{A}^{(d)} \widetilde{v} \right]$$

Quasi-HMM realization (correctness of the algorithm)

Proposition 1. Let $\theta^{o} = (d, k, u, v, A^{(j)} : j \in [d])$ be a minimal order quasi realization for the output process. If the matrix $H^{(0)}$ has rank k, then the Algorithm returns an operator model $\tilde{\theta}^{o}$ that is equivalent to θ^{o} up to linear transformation. Assume the output process can be realized by an HMM model of order k^{h} . The order k^{h} is always lower bounded by the order of the minimal order quasi realization k.

+ Sketch of the proof

 $H^{(0)} = UV', \quad U, V$ both of full rank k

$$U = \begin{bmatrix} u'A^{(1)}\cdots A^{(1)} \\ u'A^{(1)}\cdots A^{(2)} \\ \vdots \\ u'A^{(d)}\cdots A^{(d)} \end{bmatrix} T = \begin{bmatrix} \widetilde{u}'\widetilde{A}^{(1)}\cdots \widetilde{A}^{(1)} \\ \widetilde{u}'\widetilde{A}^{(1)}\cdots \widetilde{A}^{(2)} \\ \vdots \\ \widetilde{u}'\widetilde{A}^{(d)}\cdots \widetilde{A}^{(d)} \end{bmatrix}$$

Unique up to linear transformation

$$\widetilde{A}^{(j)} = T^{-1}AT$$
$$\widetilde{u} = T'u$$
$$\widetilde{v} = T^{-1}v$$

$$V' = T^{-1} \left[A^{(1)} \cdots A^{(1)} v, \cdots, A^{(d)} \cdots A^{(d)} v \right] = \left[\widetilde{A}^{(1)} \cdots \widetilde{A}^{(1)} v, \cdots, \widetilde{A}^{(d)} \cdots \widetilde{A}^{(d)} \widetilde{v} \right]$$

Quasi-HMM realization (correctness of the algorithm)

Proposition 1. Let $\theta^{o} = (d, k, u, v, A^{(j)} : j \in [d])$ be a minimal order quasi realization for the output process. If the matrix $H^{(0)}$ has rank k, then the Algorithm returns an operator model $\tilde{\theta}^{o}$ that is equivalent to θ^{o} up to linear transformation. Assume the output process can be realized by an HMM model of order k^{h} . The order k^{h} is always lower bounded by the order of the minimal order quasi realization k.

Sketch of the proof

$$H^{(0)} = UV', \quad U, V \text{ both of full rank } k$$

$$U = \begin{bmatrix} u'A^{(1)} \cdots A^{(1)} \\ u'A^{(1)} \cdots A^{(2)} \\ \vdots \\ u'A^{(d)} \cdots A^{(d)} \end{bmatrix} T = \begin{bmatrix} \widetilde{C}^{(1)} \\ Computation complexity \\ \mathcal{O}\left(d(d^n)^3\right) \\ Want poly time algorithm \\ n \sim \mathcal{O}\left(\log_d k\right) \end{bmatrix} T^{-1} v$$

$$V' = T^{-1} \left[A^{(1)} \cdots A^{(1)}v, \cdots, A^{(d)} \cdots A^{(d)}v \right] = \left[A^{(1)} \cdots \widetilde{A}^{(1)}v, \cdots, \widetilde{A}^{(d)} \cdots \widetilde{A}^{(d)}v \right]$$

Theorem 3: (1) $M = A \otimes B \otimes C$

If both A and B have full column rank, then with probability one (over random projections), Algorithm 1 uniquely recovers the factors A, B, C up to state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

Theorem 3: (1) $M = A \otimes B \otimes C$

If both A and B have full column rank, then with probability one (over random projections), Algorithm 1 uniquely recovers the factors A, B, C up to state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

Theorem 3: (1) $M = A \otimes B \otimes C$

If both A and B have full column rank, then with probability one (over random projections), Algorithm 1 uniquely recovers the factors A, B, C up to state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

Q needs to be of full rank k Increasing n can boost the rank of A,B How large N=2n+1 needs to be?

Theorem 3: (1) $M = A \otimes B \otimes C$

If both A and B have full column rank, then with probability one (over random projections), Algorithm 1 uniquely recovers the factors A, B, C up to state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

$$\Theta_{(d,k)}^h = \{\theta^h : \text{ order } k, \text{ alphabet size } d\}$$

There exists a measure zero set $\mathcal{E} \in \Theta_{(d,k)}^h$ such that for all HMMs in the set $\Theta_{(d,k)}^h \setminus \mathcal{E}$, for N = 2n + 1, with

$$n > 2\log_d(k),$$

the matrices A and B have full column rank, thus $\mathcal{S}^{(N)}$ is sufficient for learning the minimal order HMM of the output process.

Theorem 3: (1) $M = A \otimes B \otimes C$

If both A and B have full column rank, then with probability one (over random projections), Algorithm 1 uniquely recovers the factors A, B, C up to state permutation. Moreover, Theorem 2.1 can be applied to recover (Q, O).

$$\begin{split} \Theta^{h}_{(d,k)} &= \{\theta^{h}: \text{ order } k, \text{ alphabet} \\ \\ \mathbb{O}(d(d^{n})^{3}) \sim \mathcal{O}(dk^{6}) \\ \\ \\ \\ \\ \mathbb{O}(d(d^{n})^{3}) \sim \mathcal{O}(dk^{6}) \\ \\ \\ \\ \\ \\ \mathbb{O}(d(d^{n})^{3}) \sim \mathcal{O}(dk^{6}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$$

the matrices A and B have full column rank, thus $\mathcal{S}^{(N)}$ is sufficient for learning the minimal order HMM of the output process.

Minimal HMM realization (identifiability) $N \implies S^{(N)} \implies (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Proposition 2: sufficient conditions for invertability of (1)

Consider the matrices A, B, C parameterized by a minimal realization (Q, O). If the following deterministic conditions on the Kruskal rank are satisfied:

$$krank(A) + krank(B) + krank(C) \ge 2k + 2,$$
(1)

then M can be uniquely (up to common column permutation) decomposed into A, B, C, and k can be determined thereby.

Minimal HMM realization (identifiability) $N \implies S^{(N)} \implies (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

Proposition 2: sufficient conditions for invertability of (1)

Consider the matrices A, B, C parameterized by a minimal realization (Q, O). If the following deterministic conditions on the Kruskal rank are satisfied:

$$krank(A) + krank(B) + krank(C) \ge 2k + 2, \tag{1}$$

then M can be uniquely (up to common column permutation) decomposed into A, B, C, and k can be determined thereby.

$$A = \underbrace{(O \odot (O \odot (O \odot \dots (O \odot O Q) \dots)Q)Q)Q}_{n},$$

$$B = \underbrace{(O \odot (O \odot (O \odot \dots (O \odot O Q) \dots)\widetilde{Q})\widetilde{Q})\widetilde{Q}}_{n},$$

$$C = Odiag(\pi)$$

Algorithm 4 (random instance check)

 $\Theta_{(d,k,r)}^{h} = \{\theta^{h} : \text{ order } k, \text{ alphabet size } d, Q \text{ is of rank } r < k\}$

- 1. Randomly pick an HMM model $(d, k, Q, O) \in \Theta_{(d,k,r)}^h$.
- 2. Construct matrices A = OQ, $B = O\widetilde{Q}$, $C = ODiag(\pi)$, where π is the stationary distribution, and $\widetilde{Q} = Diag(\pi)Q'Diag(\pi)^{-1}$.
- 3. Run Algorithm 2.a with input $M = A \otimes B \otimes C$.
- 4. Return "yes" if the algorithm recovers A, B, C up to state permutation, and "no" otherwise.

Algorithm 4 (random instance check)

 $\Theta_{(d,k,r)}^{h} = \{\theta^{h} : \text{ order } k, \text{ alphabet size } d, Q \text{ is of rank } r < k\}$

- 1. Randomly pick an HMM model $(d, k, Q, O) \in \Theta_{(d,k,r)}^h$.
- 2. Construct matrices A = OQ, $B = O\widetilde{Q}$, $C = ODiag(\pi)$, where π is the stationary distribution, and $\widetilde{Q} = Diag(\pi)Q'Diag(\pi)^{-1}$.
- 3. Run Algorithm 2.a with input $M = A \otimes B \otimes C$.
- 4. Return "yes" if the algorithm recovers A, B, C up to state permutation, and "no" otherwise.

Theorem 4: Correctness of Algorithm 3

For given $d \ge k$ and n = 1, if Algorithm 2.b returns "yes", then there exists a measure zero set $\mathcal{E} \in \Theta_{(d,r,k)}^h$ such that Algorithm 2.a can identify all minimal HMM realizations in the set $\Theta_{(d,r,k)}^h \setminus \mathcal{E}$.

Moreover, if the latter is true, Algorithm 2.b returns "yes" with probability 1. Theorem 1 (2) can be applied to recover (Q, O) for this class of HMMs.

Minimal HMM realization (summary)

 $N \implies \mathcal{S}^{(N)} \implies (1) \quad M \Leftrightarrow A, B, C \implies (2) \quad A, B, C \Leftrightarrow (Q, O)$

- Identifiability: if (1) (2) are bijective mappings
 - \checkmark How large N is so that the minimal HMM is identifiable from $\mathcal{S}^{(N)}$?
- Algorithms: efficiently invert (1) (2)
 - ✓ For (1): Algorithm 2 (Simultaneous diagnolization)
 If Q is full rank

Algorithm 3 (Foobi)

If O has full column rank, and check a random

instance

✓ For (2): Theorem 2 (Linear inversion)
 If Q or O has full column rank