Greedy algorithm for large scale

Nonnegative matrix/tensor decomposition

LIDS student conference 2015
Qingqing Huang

Problem

Given $F \in \mathbb{R}_+^{n \times m}$ and r, find $U \in \mathbb{R}_+^{n \times r}$, $V \in \mathbb{R}_+^{r \times m}$ such that $F \approx UV$.

Non-convex, NP-hard
$$\min_{U\in\mathbb{R}^{n\times r}_+,V\in\mathbb{R}^{r\times m}_+} R(F,UV)$$

Problem

Given $F \in \mathbb{R}_+^{n \times m}$ and r, find $U \in \mathbb{R}_+^{n \times r}$, $V \in \mathbb{R}_+^{r \times m}$ such that $F \approx UV$.

Non-convex, NP-hard
$$\min_{U\in\mathbb{R}^{n\times r}_+,V\in\mathbb{R}^{r\times m}_+} R(F,UV)$$
 $\|F-UV\|_F$ $D_{KL}(F\|UV)$

Regularization for sparsity...

$$m$$
 F $\approx \widehat{F} = m$ U

Problem

Given $F \in \mathbb{R}_+^{n \times m}$ and r, find $U \in \mathbb{R}_+^{n \times r}$, $V \in \mathbb{R}_+^{r \times m}$ such that $F \approx UV$.

Non-convex, NP-hard
$$\min_{U\in\mathbb{R}^{n\times r}_+,V\in\mathbb{R}^{r\times m}_+} R(F,UV)$$
 $\|F-UV\|_F$ $D_{KL}(F\|UV)$

Regularization for sparsity...

Applications (why not PCA, Eckart-Young)

Nonnegative signals, probabilities, network

m

- ✓ Image compression
- ✓ Sound source separation
- √ Spectral clustering
- √ Topic model learning
- ✓ Hidden markov model learning

Problem

Given $F \in \mathbb{R}_+^{n \times m}$ and r, find $U \in \mathbb{R}_+^{n \times r}$, $V \in \mathbb{R}_+^{r \times m}$ such that $F \approx UV$.

Non-convex, NP-hard
$$\min_{U\in\mathbb{R}^{n\times r}_+,V\in\mathbb{R}^{r\times m}_+} R(F,UV)$$
 $\|F-UV\|_F$ $D_{KL}(F\|UV)$

Regularization for sparsity...

Applications (why not PCA, Eckart-Young)

Nonnegative signals, probabilities, network

m

- Image compression
- ✓ Sound source separation
- Spectral clustering
- √ Topic model learning
- Hidden markov model learning

Nonnegative tensor factorization

+ Problem $\min_{U^{(1)} \in \mathbb{R}^{n_1 \times r}_+, \dots, U^{(d)} \in \mathbb{R}^{n_d \times r}_+} R(F, U^{(1)} \otimes U^{(2)} \otimes \dots \otimes U^{(d)})$

+ Tensor product: multi-linear, homogeneous

Nonnegative tensor factorization

+ Problem $\min_{U^{(1)} \in \mathbb{R}^{n_1 \times r}_+, \dots, U^{(d)} \in \mathbb{R}^{n_d \times r}_+} R(F, U^{(1)} \otimes U^{(2)} \otimes \dots \otimes U^{(d)})$

- Tensor product: multi-linear, homogeneous
- + A hard problem even without the positive constraint
- Applications (natural multi-dimensional data, image, video, moments)

$$||F - UV||_F$$
 $D_{KL}(F||UV)$

 Alternating optimization method high variance especially for large scale problem can we solve it in a more controlled way?

$$||F - UV||_F$$
 $D_{KL}(F||UV)$

Alternating optimization method
 high variance especially for large scale problem
 can we solve it in a more controlled way?

 Recent theoretical work on exact recovery under assumptions can we still solve it in a agnostic way?

	Alternating optimization, EM- based algorithm (Lee Seung 2001) (Hoyer 2004)	Exact recovery algorithms (Arora et al 2012) (Recht et al 2012)	Proposed algorithm
computation	fast	$O(n^{r^2})$	O(r poly(nm))
guarantee	start from random initialization, converge to local optima	provably	$R(F,\widehat{F}_r) \le R(F,\widehat{F}_s^*) + \epsilon$
robustness	optimization based, agnostic	assumptions: exact factorization / anchor word / random genera- tion of factors	optimization based, agnostic

	Alternating optimization, EM- based algorithm (Lee Seung 2001) (Hoyer 2004)	Exact recovery algorithms (Arora et al 2012) (Recht et al 2012)	Proposed algorithm
computation	fast	$O(n^{r^2})$	O(r poly(nm))
guarantee	start from random initialization, converge to local optima	provably	$R(F,\widehat{F}_r) \le R(F,\widehat{F}_s^*) + \epsilon$
robustness	optimization based, agnostic	assumptions: exact factorization / anchor word / random genera- tion of factors	optimization based, agnostic

	Alternating optimization, EM- based algorithm (Lee Seung 2001) (Hoyer 2004)	Exact recovery algorithms (Arora et al 2012) (Recht et al 2012)	Proposed algorithm
computation	fast	$O(n^{r^2})$	O(r poly(nm))
guarantee	start from random initialization, converge to local optima	provably	$R(F,\widehat{F}_r) \le R(F,\widehat{F}_s^*) + \epsilon$
robustness	optimization based, agnostic	assumptions: exact factorization / anchor word / random genera- tion of factors	optimization based, agnostic

	Alternating optimization, EM- based algorithm (Lee Seung 2001) (Hoyer 2004)	Exact recovery algorithms (Arora et al 2012) (Recht et al 2012)	Proposed algorithm
computation	fast	$O(n^{r^2})$	O(r poly(nm))
guarantee	start from random initialization, converge to local optima	provably	$R(F,\widehat{F}_r) \le R(F,\widehat{F}_s^*) + \epsilon$
robustness	optimization based, agnostic	assumptions: exact factorization / anchor word / random genera- tion of factors	optimization based, agnostic

Algorithm

Observation:

positive weighted sum of rank-one matrices/tensors supported over the sphere in the positive orthant

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top} \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$
$$\mathcal{B}_+^m = \{u \ge 0, ||u||_2 = 1\}$$
$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i^{(1)} \otimes u_i^{(2)} \otimes \ldots \otimes u_i^{(d)}$$

Algorithm

Observation:

positive weighted sum of rank-one matrices/tensors supported over the sphere in the positive orthant

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top} \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$
$$\mathcal{B}_+^m = \{u \geq 0, ||u||_2 = 1\}$$
$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i^{(1)} \otimes u_i^{(2)} \otimes \ldots \otimes u_i^{(d)}$$

- Eckart-Young fails... but can we still find one at a time?
- Greedy feature selection (Frank-Wolfe)
 incremental, greedy, first order method

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top}, \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$

At t-th round: start from a rank (t-1) $\hat{F}_{t-1} = U_{t-1}V_{t-1}$ find a rank t NMF

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top}, \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$

At t-th round: start from a rank (t-1) $\hat{F}_{t-1} = U_{t-1}V_{t-1}$ find a rank t NMF

Step 1. Greedy feature selection

$$(u_t, v_t) = \arg\min_{u \in \mathcal{B}^m_+, v \in \mathcal{B}^n_+} u^\top \Big(\nabla_X R(F, X) \big|_{\widehat{F}_{t-1}} \Big) v$$

arphi Maximizing the decreasing rate of loss function at $\;\widehat{F}_{t-1}$

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top}, \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$

At t-th round: start from a rank (t-1) $\hat{F}_{t-1} = U_{t-1}V_{t-1}$ find a rank t NMF

Step 1. Greedy feature selection

$$(u_t, v_t) = \arg\min_{u \in \mathcal{B}_+^m, v \in \mathcal{B}_+^n} u^{\top} \Big(\nabla_X R(F, X) \big|_{\widehat{F}_{t-1}} \Big) v$$

- $ec{F}_{t-1}$ Maximizing the decreasing rate of loss function at \widehat{F}_{t-1}
- + Step 2. Weight update (not on λ_i 's)

$$U_t = [U_{t-1}, u_t], \ \widetilde{V}_t = [V_{t-1}; v_{t-1}^\top]$$

$$W_t = \arg\min_{W_t \in \mathbb{R}_+^{t \times t}} R(F, U_t W_t V_t)$$
 $t \times t$, convex - easy

$$F \approx \widehat{F} = \sum_{i=1}^{r} \lambda_i u_i v_i^{\top}, \qquad u_i \in \mathcal{B}_+^m, v_i \in \mathcal{B}_+^n$$

At t-th round: start from a rank (t-1) $\widehat{F}_{t-1} = U_{t-1}V_{t-1}$ find a rank t NMF

Step 1. Greedy feature selection

$$(u_t, v_t) = \arg\min_{u \in \mathcal{B}^m_+, v \in \mathcal{B}^n_+} u^\top \Big(\nabla_X R(F, X) \big|_{\widehat{F}_{t-1}} \Big) v$$

- arphi Maximizing the decreasing rate of loss function at \widehat{F}_{t-1}
- + Step 2. Weight update (not on λ_i 's)

$$U_t = [U_{t-1}, u_t], \ \widetilde{V}_t = [V_{t-1}; v_{t-1}^\top]$$

$$W_t = \arg\min_{W_t \in \mathbb{R}_+^{t \times t}} R(F, U_t W_t V_t) \qquad t \times t, \text{ convex - easy}$$

$$V_t = W_t \widetilde{V}_t \qquad \widehat{F}_t = U_t V_t$$

One round improvement

$$R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_t) \ge \frac{(R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_r^*))^2}{2\beta(\sum_{u_i v_i^\top \in I^*} \lambda_i^*)^2}$$

One round improvement

$$R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_t) \ge \frac{(R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_r^*))^2}{2\beta(\sum_{u_i v_i^\top \in I^*} \lambda_i^*)^2}$$

After t rounds

$$R(F, \widehat{F}_t) \le \frac{2\beta}{t}$$

$$R(F, \widehat{F}_t) \le R(F, \widehat{F}_r^*) + \epsilon$$
, for $t \ge \frac{4\beta(R(F,0) - R(F, \widehat{F}_r^*))}{\sigma \epsilon} r$.

One round improvement

$$R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_t) \ge \frac{(R(F, \widehat{F}_{t-1}) - R(F, \widehat{F}_r^*))^2}{2\beta(\sum_{u_i v_i^\top \in I^*} \lambda_i^*)^2}$$

After t rounds

$$R(F, \widehat{F}_t) \le \frac{2\beta}{t}$$

$$R(F, \widehat{F}_t) \le R(F, \widehat{F}_r^*) + \epsilon$$
, for $t \ge \frac{4\beta(R(F,0) - R(F, F_r^*))}{\sigma \epsilon} r$.

* So far, break the original problem into a sequence of "simpler" problems:

$$(u_t, v_t) = \arg\min_{u \in \mathcal{B}_+^m, v \in \mathcal{B}_+^n} u^\top \Big(\nabla_X R(F, X) \big|_{\widehat{F}_{t-1}} \Big) v$$

Can we solve the "simpler" problems efficiently?

Greedy feature selection step

$$\min_{u \in \mathcal{B}_{+}^{m}} u^{\top} \underbrace{\left(\nabla_{X} R(F, X) \big|_{\widehat{F}_{t-1}}\right)}_{Q} u$$

- + Greedy feature selection step $\min_{u \in \mathcal{B}^m_+} u^\top \underbrace{\left(\nabla_X R(F,X) \big|_{\widehat{F}_{t-1}} \right)}_{\Omega} u$
- SDP relaxation for quadratic program

$$\min_{X \in \mathbb{R}^{n \times n}_{sym}} Trace(QX)$$
such that: $X \succeq 0, X$ rank one
$$X_{i,j} \geq 0, \ \forall i, j,$$

$$Trace(X) = 1.$$

- + Greedy feature selection step $\min_{u \in \mathcal{B}^m_+} u^\top \underbrace{\left(\nabla_X R(F,X) \big|_{\widehat{F}_{t-1}} \right)}_{\Omega} u$
- SDP relaxation for quadratic program

$$\min_{X \in \mathbb{R}_{sym}^{n \times n}} Trace(QX)$$
such that: $X \succeq 0, X$ rank one
$$X_{i,j} \geq 0, \ \forall i, j,$$

$$Trace(X) = 1.$$

If X is rank one, then $X = uu^{\top}$.

- + Greedy feature selection step $\min_{u \in \mathcal{B}^m_+} u^\top \underbrace{\left(\nabla_X R(F,X) \big|_{\widehat{F}_{t-1}} \right)}_{\Omega} u$
- SDP relaxation for quadratic program

$$\min_{X \in \mathbb{R}_{sym}^{n \times n}} Trace(QX)$$
such that: $X \succeq 0, X$ rank one
$$X_{i,j} \geq 0, \ \forall i, j,$$

$$Trace(X) = 1.$$

If X is rank one, then $X = uu^{\top}$.

- + What if SDP solution is not rank one?
 - ✓ Rank reduction, other relaxation form to enforce rank constraint
- Asymmetric case can be reduced to symmetric case

Rank one problem (tensor)

Greedy feature selection step

$$\min_{u \in \mathcal{B}^n_+} Q(\underbrace{u, u, \dots, u}_{d})$$

General polynomial optimization over (multi) positive spheres

Rank one problem (tensor)

Greedy feature selection step

$$\min_{u \in \mathcal{B}^n_+} Q(\underbrace{u, u, \dots, u}_d)$$

- + General polynomial optimization over (multi) positive spheres
- Reduce to a QP (auxiliary variables of monomials)

$$z = \left[u_1^{d/2}, u_1^{d/2-1} u_2, \dots, u_1^{d/2-2} u_2 u_3, \dots, u_n^{d/2} \right] \in \mathbb{R}^{\widetilde{n}}$$

Rank one problem (tensor)

Greedy feature selection step

- $\min_{u \in \mathcal{B}^n_+} Q(\underbrace{u, u, \dots, u}_d)$
- General polynomial optimization over (multi) positive spheres
- Reduce to a QP (auxiliary variables of monomials)

$$z = \left[u_1^{d/2}, u_1^{d/2-1} u_2, \dots, u_1^{d/2-2} u_2 u_3, \dots, u_n^{d/2} \right] \in \mathbb{R}^{\widetilde{n}}$$

+ Adopt SDP relaxation $Z = zz^{\top}$ monomials of degree d

$$\min_{Z \in \mathbb{R}_{sym}^{\widetilde{n} \times \widetilde{n}}} Trace(\widetilde{Q}Z)$$
 such that: $Z \succeq 0$, rank one,
$$Z_{i,j} \geq 0, \ \forall i,j \leq \widetilde{n},$$

$$Trace(P_0Z) = \sum_{i_1,\ldots,i_{d/2} \in [n]} u_{i_1}^2 u_{i_2}^2 \ldots u_{i_{d/2}}^2 = 1.$$
 a set of linear consistency constraints

Summary before numerical examples * Two step sequential algorithm

- - Heuristic post processing: prune least important features
 - Use it in complementary to alternating optimization methods

Summary before numerical examples

- Two step sequential algorithm
 - Heuristic post processing: prune least important features
 - Use it in complementary to alternating optimization methods

+ Message

- ✓ Tradeoff computation with guaranteed accuracy
- ✓ A class of "Hard" ML problems, non-convex due to latent structure look for efficient algorithm -- more assumptions, or approximate solution

	Alternating optimization, EM- based algorithm (Lee Seung 2001) (Hoyer 2004)	Exact recovery algorithms (Arora et al 2012) (Recht et al 2012)	Proposed algorithm
computation	fast	$O(n^{r^2})$	O(r poly(nm))
guarantee	start from random initialization, converge to local optima	provably	$R(F, \widehat{F}_r) \le R(F, \widehat{F}_s^*) + \epsilon$
robustness	optimization based, agnostic	assumptions: exact factorization / anchor word / random genera- tion of factors	optimization based, agnostic

Summary before numerical examples

- Two step sequential algorithm
 - Heuristic post processing: prune least important features
 - ✓ Use it in complementary to alternating optimization methods

Message

- ✓ Tradeoff computation with guaranteed accuracy
- A class of "Hard" ML problems, non-convex due to latent structure look for efficient algorithm -- more assumptions, or approximate solution

Open problems

- ✓ Understand SDP relaxation, variations of relaxation to enforce rank constraint
- √ Large scale SDP numerical
- √ Proof for guarantee on Greedy + ALS

+ Symmetric matrix, n = 60 $\hat{F}_t = U_t U_t^{\top}$

+ Symmetric matrix, n = 60 $\hat{F}_t = U_t U_t^{\top}$

Use sequential algorithm for initial point of alternating improvement

Greedy selection + weight update
One time ALS improvement

+ Symmetric matrix, n = 60 $\hat{F}_t = U_t U_t^{\top}$

Use sequential algorithm for initial point of alternating improvement

Sequential algorithm is exact if the matrix is orthogonally decomposable

Greedy selection + weight update
One time ALS improvement

+ Asymmetric matrix, n = m = 30

+ Asymmetric matrix, n = m = 30

Greedy selection + weight update
One ALS improvement

Asymmetric matrix, n = m = 30

Greedy selection + weight update
One ALS improvement

Greedy selection + weight update + ALS One ALS improvement

+ 4-th order symmetric tensor n = 20, true rank $r^* = 5$

Thank you

LIDS student conference 2015