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Nonnegative matrix factorization

R Problem

Given F' € RT™™ and r, find U € R}*", V € RU*™ such that F = UV.

Non-convex, NP-hard minUERixT7V€RZ><m R(F,UV)
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Nonnegative tensor factorization

R Problem ML) g7 X7 U@ eR”
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r Tensor product: multi-linear, homogeneous
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Nonnegative tensor factorization

z Problem min naxr RIE,UD @ UR @ ... @ UD)
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r Tensor product: multi-linear, homogeneous

UMeRM ™", UM@EeR

r A hard problem even without the positive constraint

r Applications (natural multi-dimensional data, image, video, moments)




Literature

high variance especially for large scale problem

|F=UV|F

Dir(F|UV)
r Alternating optimization method

can we solve it in a more controlled way?

average mean square loss
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h=30, inner dimension r



Literature
|F'=UV|r  Dgrp(F|UV)

r Alternating optimization method
high variance especially for large scale problem
can we solve it in a more controlled way?
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h=30, inner dimension r
R Recent theoretical work on exact recovery under assumptions

can we still solve it in a agnostic way?



Literature

Alternating optimization, EM-
based algorithm (Lee Seung
2001) (Hoyer 2004)

Exact  recovery  algorithms
(Arora et al 2012) (Recht et al

2012)

Proposed algorithm

computation | fast O(n") O(r poly(nm))
guarantee start from random initialization, | provably R(F, E.n) < R(F, F )+ e
converge to local optima
robustness | optimization based, agnostic assumptions: exact factorization | optimization based, agnostic

/ anchor word / random genera-
tion of factors
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Algorithm

r Observation:
positive weighted sum of rank-one matrices/tensors

supported over the sphere in the positive orthant

- BY = {u>0,lul = 1}
FreF =Y \u"ou?e.. ou®

1=1
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Algorithm

r Observation:
positive weighted sum of rank-one matrices/tensors

supported over the sphere in the positive orthant

= B = {u > 0, Jull2 = 1}
F%F\:Z)\iugl)@)u?)®...®u§d)

1=1

r Eckart-Young fails... but can we still find one at a time?

r Greedy feature selection (Frank-Wolfe)

incremental, greedy, first order method
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Incremental algorithm

-
F%F:Z)\iuivj, U7;€B_T,U7;€Bi
1=1

At t-th round: start from a rank (t-1) F\t_l = U,_1V;_1 find arank t NMF
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Incremental algorithm

-
F%F:Z)\ZUZ?}I, UiEBT,UiEBi
1=1

At t-th round: start from a rank (t-1) find a rank t NMF

r Step 1. Greedy feature selection

n Maximizing the decreasing rate of loss function at
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