
Learning Mixtures of Gaussians in High Dimensions

[Extended Abstract]∗

Rong Ge
Microsoft Research,

New England

Qingqing Huang
MIT, EECS

Sham M. Kakade
Microsoft Research,

New England

ABSTRACT
Efficiently learning mixture of Gaussians is a fundamental
problem in statistics and learning theory. Given samples
coming from a random one out of k Gaussian distributions
in Rn, the learning problem asks to estimate the means and
the covariance matrices of these Gaussians. This learning
problem arises in many areas ranging from the natural sci-
ences to the social sciences, and has also found many ma-
chine learning applications.

Unfortunately, learning mixture of Gaussians is an infor-
mation theoretically hard problem: in order to learn the pa-
rameters up to a reasonable accuracy, the number of samples
required is exponential in the number of Gaussian compo-
nents in the worst case. In this work, we show that provided
we are in high enough dimensions, the class of Gaussian mix-
tures is learnable in its most general form under a smoothed
analysis framework, where the parameters are randomly per-
turbed from an adversarial starting point.

In particular, given samples from a mixture of Gaussians
with randomly perturbed parameters, when n ≥ Ω(k2), we
give an algorithm that learns the parameters with polyno-
mial running time and using polynomial number of samples.

The central algorithmic ideas consist of new ways to de-
compose the moment tensor of the Gaussian mixture by ex-
ploiting its structural properties. The symmetries of this
tensor are derived from the combinatorial structure of higher
order moments of Gaussian distributions (sometimes referred
to as Isserlis’ theorem or Wick’s theorem). We also develop
new tools for bounding smallest singular values of structured
random matrices, which could be useful in other smoothed
analysis settings.

Keywords
mixture models; spectral methods; smoothed analysis.

∗A full version of this paper is available at http://arxiv.
org/abs/1503.00424. The Second author was supported in
part by NSF/CPS 6924594

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC’15, June 14–17, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3536-2/15/06 ...$15.00.
http://dx.doi.org/10.1145/2746539.2746616 .

1. INTRODUCTION
Learning mixtures of Gaussians is a fundamental problem

in statistics and learning theory, whose study dates back to
Pearson (1894). Gaussian mixture models arise in numer-
ous areas including physics, biology and the social sciences
(McLachlan and Peel (2004); Titterington et al. (1985)), as
well as in image processing (Reynolds and Rose (1995)) and
speech (Permuter et al. (2003)).

In a Gaussian mixture model, there are k unknown n-
dimensional multivariate Gaussian distributions. Samples
are generated by first picking one of the k Gaussians, then
drawing a sample from that Gaussian distribution. Given
samples from the mixture distribution, our goal is to esti-
mate the means and covariance matrices of these underlying
Gaussian distributions1.

This problem has a long history in theoretical computer
science. The seminal work of Dasgupta (1999) gave an al-
gorithm for learning spherical Gaussian mixtures when the
means are well separated. Subsequent works (Dasgupta and
Schulman (2000); Sanjeev and Kannan (2001); Vempala and
Wang (2004); Brubaker and Vempala (2008)) developed bet-
ter algorithms in the well-separated case, relaxing the spher-
ical assumption and the amount of separation required.

When the means of the Gaussians are not separated, after
several works (Belkin and Sinha (2009); Kalai et al. (2010)),
Belkin and Sinha (2010) and Moitra and Valiant (2010) in-
dependently gave algorithms that run in polynomial time
and with polynomial number of samples for a fixed num-
ber of Gaussians. However, both running time and sample
complexity depend super exponentially on the number of
components k2. Their algorithm is based on the method of
moments introduced by Pearson (1894): first estimate the
O(k)-order moments of the distribution, then try to find
the parameters that agree with these moments. Moitra and
Valiant (2010) also show that the exponential dependency
of the sample complexity on the number of components is
necessary, by constructing an example of two mixtures of
Gaussians with very different parameters, yet with expo-
nentially small statistical distance.

Recently, Hsu and Kakade (2013) applied spectral meth-
ods to learning mixture of spherical Gaussians. When n ≥
k + 1 and the means of the Gaussians are linearly inde-
pendent, their algorithm can learn the model in polyno-
mial time and with polynomial number of samples. This

1 This is different from the problem of density estimation
considered in Feldman et al. (2006); Chan et al. (2014)
2 In fact, it is in the order of O(eO(k)k) as shown in Theorem
11.3 in Valiant (2012).

http://arxiv.org/abs/1503.00424
http://arxiv.org/abs/1503.00424

result suggests that the lower bound example in Moitra and
Valiant (2010) is only a degenerate case in high dimensional
space. In fact, most (in general position) mixture of spher-
ical Gaussians are easy to learn. This result is also based
on the method of moments, and only uses second and third
moments. Several follow-up works (Bhaskara et al. (2014);
Anderson et al. (2013)) use higher order moments to get
better dependencies on n and k.

However, the algorithm in Hsu and Kakade (2013) as well
as in the follow-ups all make strong requirements on the co-
variance matrices. In particular, most of them only apply
to learning mixture of spherical Gaussians. For mixture of
Gaussians with general covariance matrices, the best known
result is still Belkin and Sinha (2010) and Moitra and Valiant
(2010), which algorithms are not polynomial in the number
of components k. This leads to the following natural ques-
tion:

Question: Is it possible to learn most mixture of Gaussians
in polynomial time using a polynomial number of samples?

Our Results.
In this paper, we give an algorithm that learns most mix-

ture of Gaussians in high dimensional space (when n ≥
Ω(k2)), and the argument is formalized under the smoothed
analysis framework first proposed in Spielman and Teng
(2004).

In the smoothed analysis framework, the adversary first
choose an arbitrary mixture of Gaussians. Then the mean
vectors and covariance matrices of this Gaussian mixture are
randomly perturbed by a small amount ρ 3. The samples are
then generated from the Gaussian mixture model with the
perturbed parameters. The goal of the algorithm is to learn
the perturbed parameters from the samples.

The smoothed analysis framework is a natural bridge be-
tween worst-case and average-case analysis. On one hand, it
is similar to worst-case analysis, as the adversary chooses the
initial instance, and the perturbation allowed is small. On
the other hand, even with small perturbation, we may hope
that the instance be different enough from degenerate cases.
A successful algorithm in the smoothed analysis setting sug-
gests that the bad instances must be very “sparse” in the pa-
rameter space: they are highly unlikely in any small neigh-
borhood of any instance. Recently, the smoothed analysis
framework has also motivated several research work (Kalai
et al. (2009) Bhaskara et al. (2014)) in analyzing learning
algorithms.

In the smoothed analysis setting, we show that it is easy
to learn most Gaussian mixtures:

Theorem 1.1. (informal statement of Theorem 3.4) In
the smoothed analysis setting, when n ≥ Ω(k2), given sam-
ples from the perturbed n-dimensional Gaussian mixture model
with k components, there is an algorithm that learns the cor-
rect parameters up to accuracy ε with high probability, using
polynomial time and number of samples.

An important step in our algorithm is to learn Gaus-
sian mixture models whose components all have mean zero,
which is also a problem of independent interest (Zoran and
Weiss (2012)). Intuitively this is also a “hard” case, as there
is no separation in the means. Yet algebraically, this case

3See Definition 3.2 in Section 3.1 for the details.

gives rise to a novel tensor decomposition algorithm. The
ideas for solving this decomposition problem are then gen-
eralized to tackle the most general case.

Theorem 1.2. (informal statement of Theorem 3.5) In
the smoothed analysis setting, when n ≥ Ω(k2), given sam-
ples from the perturbed mixture of zero-mean n-dimensional
Gaussian mixture model with k components, there is an al-
gorithm that learns the parameters up to accuracy ε with
high probability, using polynomial running time and number
of samples.

Organization.
The main part of the paper will focus on learning mix-

tures of zero-mean Gaussians. The proposed algorithm for
this special case contains most of the new ideas and tech-
niques. In Section 2 we introduce the notations for ma-
trices and tensors which are used to handle higher order
moments throughout the discussion. Then in Section 3 we
introduce the smoothed analysis model for learning mixture
of Gaussians and discuss the moment structure of mixture of
Gaussians, then we formally state our main theorems. Sec-
tion 4 outlines our algorithm for learning zero-mean mixture
of Gaussians. In Section 6 we briefly discuss how the ideas
for zero-mean case can be generalized to learning mixture of
nonzero Gaussians.

2. NOTATIONS

Vectors and Matrices.
In the vector space Rn, let 〈·, ·〉 denote the inner product

of two vectors, and ‖ · ‖ to denote the Euclidean norm.
For a tall matrix A ∈ Rm×n, let A[:,j] denote its j-th col-

umn vector, let A> denote its transpose, A† = (A>A)−1A>

denote the pseudoinverse, and let σk(A) denote its k-th sin-
gular value. Let In be the identity matrix of dimension n×n.
The spectral norm of a matrix is denoted as ‖ · ‖, and the
Frobenius norm is denoted as ‖ · ‖F . We use A � 0 for
positive semidefinite matrix A.

In the discussion, we often need to convert between vectors
and matrices. Let vec(A) ∈ Rmn denote the vector obtained

by stacking all the columns of A. For a vector x ∈ Rm
2

,
let mat(x) ∈ Rm×m denote the inverse mapping such that
vec(mat(x)) = x.

We use [n] to denote the set {1, 2, ..., n} and [n] × [n] to
denote the set {(i, j) : i, j ∈ [n]}. These are often used as
indices of matrices.

Symmetric matrices.
We use Rn×nsym to denote the space of all n × n symmet-

ric matrices, which subspace has dimension
(
n+1
2

)
. Since we

will frequently use n× n and k × k symmetric matrices, we
denote their dimensions by the constants n2 =

(
n+1
2

)
and

k2 =
(
k+1
2

)
. Similarly, we use Rn×···×nsym to denote the sym-

metric k-dimensional multi-arrays (tensors), which subspace
has dimension

(
n+k−1

k

)
. If a k-th order tensor X ∈ Rn×···×nsym ,

then for any permutation π over [k], we have Xn1,...,nk =
Xnπ(1),...,nπ(k)

.

Linear subspaces.
We represent a linear subspace S ∈ Rn of dimension d by

a matrix S ∈ Rn×d, whose columns of S form an (arbitrary)
orthonormal basis of the subspace. The projection matrix
onto the subspace S is denoted by ProjS = SS>, and the
projection onto the orthogonal subspace S⊥ is denoted by
ProjS⊥ = In−SS>. When we talk about the span of several
matrices, we mean the space spanned by their vectorization.

Tensors.
A tensor is a multi-dimensional array. Tensor notations

are useful for handling higher order moments. We use ⊗ to
denote tensor product, suppose a, b, c ∈ Rn, T = a⊗ b⊗ c ∈
Rn×n×n and Ti1,i2,i3 = ai1bi2ci3 . For a vector x ∈ Rn, let
the t-fold tensor product x⊗t denote the t-th order rank one
tensor (x⊗t)i1,i2,...,it =

∏t
j=1 xij .

Every tensor defines a multilinear mapping. Consider a
3-rd order tensor X ∈ RnA×nB×nC . For given dimension
mA,mB ,mC , it defines a multi-linear mapping X(·, ·, ·) :
RnA×mA ×RnB×mB ×RnC×mC → RmA×mB×mC defined as
below: (∀j1 ∈ [mA], j2 ∈ [mB], j3 ∈ [mC])

[X(V1, V2, V3)]j1,j2,j3

=
∑

i1∈[nA],i2∈[nB],i3∈[nC]

Xi1,i2,i3 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 .

If X admits a decomposition X =
∑k
i=1A[:,i] ⊗B[:,i] ⊗C[:,i]

for A ∈ RnA×k, B ∈ RnB×k, C ∈ RnC×k, the multi-linear
mapping has the form X(V1, V2, V3) =

∑k
i=1(V >1 A[:,i]) ⊗

(V >2 B[:,i])⊗ (V >3 C[:,i]).
In particular, the vector given by X(ei, ej , I) is the one-

dimensional slice of the 3-way array, with the index for the
first dimension to be i and the second dimension to be j.

Matrix Products.
We use � to denote column wise Katri-Rao product, and
⊗kr to denote Kronecker product. As an example, for ma-
trices A ∈ RmA×n, B ∈ RmB×n, C ∈ RmC×n:

[A⊗B ⊗ C]j1,j2,j3 =

n∑
i=1

Aj1,iBj2,iCj3,i,

[A�B][:,j] = A[:,j] ⊗kr B[:,j],

A⊗kr B =

 A1,1B · · · A1,nB
...

. . .
...

AmA,1B · · · AmA,nB

 .

3. MAIN RESULTS
In this section, we first formally introduce the smoothed

analysis framework for our problem and state our main the-
orems. Then we will discuss the structure of the moments
of Gaussian mixtures, which is crucial for understanding our
method of moments based algorithm.

3.1 Smoothed Analysis for Learning Mixture
of Gaussians

Let Gn,k denote the class of Gaussian mixtures with k
components in Rn. A distribution in this family is specified
by the following parameters: the mixing weights ωi, the
mean vectors µ(i) and the covariance matrices Σ(i), for i ∈

[k].

Gn,k :=
{
G = {(ωi, µ(i),Σ(i))}i∈[k] : ωi ∈ R+,

k∑
i=1

ωi = 1,

µ(i) ∈ Rn, Σ(i) ∈ Rn×nsym , Σ(i) � 0
}
.

As an interesting special case of the general model, we also
consider the mixture of “zero-mean” Gaussians, which has
µ(i) = 0 for all components i ∈ [k].

A sample x from a mixture of Gaussians is generated in
two steps:

1. Sample h ∈ [k] from a multinomial distribution, with
probability Pr[h = i] = ωi for i ∈ [k].

2. Sample x ∈ Rn from the h-th Gaussian distribution
N (µ(h),Σ(h)).

The learning problem asks to estimate the parameters of the
underlying mixture of Gaussians:

Definition 3.1 (Learning mixture of Gaussians).
Given N samples x1, x2, ..., xN drawn i.i.d. from a mix-
ture of Gaussians G = {(ωi, µ(i),Σ(i))}i∈[k], an algorithm
learns the mixture of Gaussians with accuracy ε, if it out-

puts an estimation Ĝ = {(ω̂i, µ̂(i), Σ̂(i))}i∈[k] such that there
exists a permutation π on [k], and for all i ∈ [k], we have

|ω̂i−ωπ(i)| ≤ ε, ‖µ̂(i)−µ(π(i))‖ ≤ ε and ‖Σ̂(i)−Σ(π(i))‖ ≤ ε.

In the worst case, learning mixture of Gaussians is a in-
formation theoretically hard problem (Moitra and Valiant
(2010)). There exists worst-case examples where the number
of samples required for learning the instance is at least expo-
nential in the number of components k (McLachlan and Peel
(2004)). The non-convexity arises from the hidden variable
h: without knowing h we cannot determine which Gaussian
component each sample comes from.

The smoothed analysis framework provides a way to cir-
cumvent the worst case instances, yet still studying this
problem in its most general form. The basic idea is that,
with high probability over the small random perturbation
to any instance, the instance will not be a “worst-case” in-
stance, and actually has reasonably good condition for the
algorithm.

Next, we show how the parameters of the mixture of Gaus-
sians are perturbed in our setup.

Definition 3.2 (ρ-smooth mixture of Gaussians).
For ρ < 1/n, a ρ-smooth n-dimensional k-component mix-

ture of Gaussians G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k] ∈ Gn,k is gener-
ated as follows:

1. Choose an arbitrary (could be adversarial) instance G =

{(ωi, µ(i),Σ(i))}i∈[k] ∈ Gn,k. Scale the distribution such

that 0 � Σ(i) � 1
2
In and ‖µ(i)‖ ≤ 1

2
for all i ∈ [k].

2. Let ∆i ∈ Rn×nsym be a random symmetric matrix with ze-
ros on the diagonals, and the upper-triangular entries
are independent random Gaussian variables N (0, ρ2).
Let δi ∈ Rn be a random Gaussian vector with inde-
pendent Gaussian variables N (0, ρ2).

3. Set ω̃i = ωi, µ̃
(i) = µ(i) + δi, Σ̃(i) = Σ(i) + ∆i.

4. Choose the diagonal entries of Σ̃(i) arbitrarily, while
ensuring the positive semi-definiteness of the covari-

ance matrix Σ̃(i), and the diagonal entries are upper
bounded by 1. The perturbation procedure fails if this
step is infeasible4.

A ρ-smooth zero-mean mixture of Gaussians is generated us-
ing the same procedure, except that we set µ̃(i) = µ(i) = 0,
for all i ∈ [k].

Remark 3.3. When the original matrix is of low rank,
a simple random perturbation may not lead to a positive
semidefinite matrix, which is why our procedure of pertur-
bation is more restricted in order to guarantee that the per-
turbed matrix is still a valid covariance matrix.

There could be other ways of locally perturbing the covari-
ance matrix. Our procedure actually gives more power to the
adversary as it can change the diagonals after observing the
perturbations for other entries. Note that with high probabil-
ity if we just let the new diagonal to be 5

√
nρ larger than the

original ones, the resulting matrix is still a valid covariance
matrix. In other words, the adversary can always keep the
perturbation small if it wants to.

Instead of the worst-case problem in Definition 3.1, our
algorithms work on the smoothed instance. Here the model

first gets perturbed to G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k], the sam-
ples are drawn according to the perturbed model, and the
algorithm tries to learn the perturbed parameters. We give
a polynomial time algorithm in this case:

Theorem 3.4 (Main theorem). Consider a ρ-smooth

mixture of Gaussians G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k] ∈ Gn,k for

which the number of components is at least 5 k ≥ C0 and
the dimension n ≥ C1k

2, for some fixed constants C0 and
C1. Suppose that the mixing weights ω̃i ≥ ωo for all i ∈ [k].

Given N samples drawn i.i.d. from G̃, there is an algo-

rithm that learns the parameters of G̃ up to accuracy ε, with
high probability over the randomness in both the perturba-
tion and the samples. Furthermore, the running time and
number of samples N required are both upper bounded by
poly(n, k, 1/ωo, 1/ε, 1/ρ).

To better illustrate the algorithmic ideas for the general
case, we first present an algorithm for learning mixtures of
zero-mean Gaussians. Note that this is not just a special
case of the general case, as with the smoothed analysis, the
zero mean vectors are not perturbed.

Theorem 3.5 (Zero-mean). Consider a ρ-smooth mix-

ture of zero-mean Gaussians G̃ = {(ω̃i, 0, Σ̃(i))}i∈[k] ∈ Gn,k
for which the number of components is at least k ≥ C0

and the dimension n ≥ C1k
2, for some fixed constants C0

and C1. Suppose that the mixing weights ω̃i ≥ ωo for all

i ∈ [k]. Given N samples drawn i.i.d. from G̃, there is

an algorithm that learns the parameters of G̃ up to accu-
racy ε, with high probability over the randomness in both

4 Note that by standard random matrix theory, with high
probability the 4-th step is feasible and the perturbation
procedure in Definition 3.2 succeeds. Also, with high prob-

ability we have ‖µ̃(i)‖ ≤ 1 and 0 � Σ̃(i) � In for all i ∈ [k].
5Note that the algorithms of Belkin and Sinha (2010) and
Moitra and Valiant (2010) run in polynomial time for fixed
k.

the perturbation and the samples. Furthermore, the running
time and number of samples N are both upper bounded by
poly(n, k, 1/ωo, 1/ε, 1/ρ).

Throughout the paper we always assume that n ≥ C1k
2

and ω̃i ≥ ωo.

3.2 Moment Structure of Mixture of Gaussians
Our algorithm is also based on the method of moments,

and we only need to estimate the 3-rd, the 4-th and the 6-th
order moments. In this part we briefly discuss the structure
of 4-th and 6-th moments in the zero-mean case (3-rd mo-
ment is always 0 in the zero-mean case). These structures
are essential to the proposed algorithm.

The m-th order moments of the zero-mean Gaussian mix-
ture model G ∈ Gn,k are given by the following m-th order
symmetric tensor Mm ∈ Rn×···×nsym : ∀j1, . . . , jm ∈ [n],

[Mm]j1,...,jm := E [xj1 . . . xjm] =

k∑
i=1

ωiE
[
y
(i)
j1
. . . y

(i)
jm

]
,

where y(i) corresponds to the n-dimensional zero-mean Gaus-
sian distributionN (0,Σ(i)). The moments for each Gaussian
component are characterized by Isserlis’s theorem as below:

Theorem 3.6 (Isserlis’ Theorem). Let (y1, . . . , y2t) be
a multivariate zero-mean Gaussian random vector N (0,Σ),
then

E[y1 . . . y2t] =
∑∏

Σu,v,

where the summation is taken over all distinct ways of par-
titioning y1, . . . , y2t into t pairs, which correspond to all the
perfect matchings in a complete graph.

Ideally, we would like to obtain the following quantities
(recall n2 =

(
n+1
2

)
):

X4 =

k∑
i=1

ωivec(Σ(i))⊗2 ∈ Rn2×n2 , (1)

X6 =

k∑
i=1

ωivec(Σ(i))⊗3 ∈ Rn2×n2×n2 . (2)

Note that the entries in X4 and X6 are quadratic and
cubic monomials of the covariance matrices, respectively. If
we have X4 and X6, the tensor decomposition algorithm in
Anandkumar et al. (2014) can be immediately applied to

recover ωi’s and Σ(i)’s under mild conditions. It is easy to
verify that those conditions are indeed satisfied with high
probability in the smoothed analysis setting.

By Isserlis’s theorem, the entries of the moments M4 and
M6 are indeed quadratic and cubic functions of the covari-
ance matrices, respectively. However, the structure of the
true moments M4 and M6 have more symmetries, consider
for example,

[M4]1,2,3,4 =

k∑
i=1

ωi(Σ
(i)
1,2Σ

(i)
3,4 + Σ

(i)
1,3Σ

(i)
2,4 + Σ

(i)
1,4Σ

(i)
2,3),

while [X4](1,2),(3,4) =
∑k
i=1 ωiΣ

(i)
1,2Σ

(i)
3,4. Note that due to

symmetry, the number of distinct entries in M4 (
(
n+3
4

)
≈

n4/24) is much smaller than the number of distinct entries
in X4 (

(
n2+1

2

)
≈ n4/8). Similar observation can be made

about M6 and X6.

Therefore, it is not immediate how to find the desired X4

and X6 based on M4 and M6. We call the moments M4,M6

the folded moments as they have more symmetry, and the
corresponding X4, X6 the unfolded moments. One of the key
steps in our algorithm is to unfold the true moments M4,M6

to get X4, X6 by exploiting special structure of M4,M6.
In some cases, it is easier to restrict our attention to the

entries in M4 with indices corresponding to distinct vari-
ables. In particular, we define

M4 = [[M4]j1,j2,j3,j4 : 1 ≤ j1 < j2 < j3 < j4 ≤ n] ∈ Rn4 ,
(3)

where n4 =
(
n
4

)
is the number of 4-tuples with indices cor-

responding to distinct variables. We define M6 ∈ Rn6 simi-
larly where n6 =

(
n
6

)
. We will see that these entries are nice

as they are linear projections of the desired unfolded mo-
ments X4 and X6 (Lemma 3.7 below), also such projections
satisfy certain “symmetric off-diagonal” properties which are
convenient for the proof.

Lemma 3.7. For a zero-mean Gaussian mixture model,
there exist two fixed and known linear mappings F4 : Rn2×n2 →
Rn4 and F6 : Rn2×n2×n2 → Rn6 such that:

M4 =
√

3F4(X4), M6 =
√

15F6(X6). (4)

Moreover F4 is a projection from a
(
n2+1

2

)
-dimensional sub-

space to a n4-dimensional subspace, and F6 is a projection
from a

(
n2+2

3

)
-dimensional subspace to a n6-dimensional sub-

space.

4. ALGORITHM OUTLINE FOR LEARN-
ING MIXTURE OF ZERO-MEAN GAUS-
SIANS

In this section, we present our algorithm for learning zero-
mean Gaussian mixture model. The algorithmic ideas and
the analysis are at the core of this paper. Later we show
that it is relatively easy to generalize the basic ideas and
the techniques to handle the general case.

For simplicity we state our algorithm using the exact mo-

ments M̃4 and M̃6, while in implementation the empirical

moments M̂4 and M̂6 obtained with the samples are used.
In later sections, we verify the correctness of the algorithm
and show that it is robust: the algorithm learns the param-
eters up to arbitrary accuracy using polynomial number of
samples.

Step 1. Span Finding: Find the span of covariance ma-
trices .

(a) For a set of indices H ⊂ [n] of size |H| =
√
n, find the

span:

S = span
{

Σ̃
(i)

[:,j] : i ∈ [k], j ∈ H
}
⊂ Rn. (5)

(b) Find the span of the covariance matrices with the columns
projected onto S⊥, namely,

US = span
{

vec(ProjS⊥Σ̃(i)) : i ∈ [k]
}
⊂ Rn

2

. (6)

(c) For two disjoint sets of indices H1 and H2, repeat Step
1 (a) and Step 1 (b) to obtain U1 and U2, namely the

span of covariance matrices projected onto two sub-
spaces S⊥1 and S⊥2 . Merge U1 and U2 to obtain the
span of covariance matrices U :

U = span
{

Σ̃(i) : i ∈ [k]
}
⊂ Rn2 . (7)

Step 2. Unfolding: Recover the unfolded moments X̃4, X̃6.

Given the folded moments M̃4, M̃6 as defined in (3), and

given the subspace U ∈ Rn2×k from Step 1, let Ỹ4 ∈ Rk×ksym

and Ỹ6 ∈ Rk×k×ksym be the unknowns, solve the following sys-
tems of linear equations.

M̃4 =
√

3F4(UỸ4U
>), M̃6 =

√
15F6(Ỹ6(U>, U>, U>)).

(8)

The unfolded moments X̃4, X̃6 are then given by

X̃4 = UỸ4U
>, X̃6 = Ỹ6(U>, U>, U>).

Step 3. Tensor Decomposition: learn ω̃i and Σ̃(i) from

Ỹ4 and Ỹ6.
Given U , and given Ỹ4 and Ỹ6 which are relate to the pa-
rameters as follows:

Ỹ4 =

k∑
i=1

ω̃i(U
>Σ̃(i))⊗2, Ỹ6 =

k∑
i=1

ω̃i(U
>Σ̃(i))⊗3,

we apply tensor decomposition techniques to recover Σ̃(i)’s
and ω̃i’s.

5. IMPLEMENTING THE STEPS FOR MIX-
TURE OF ZERO-MEAN GAUSSIANS

In this part we show how to accomplish each step of the
algorithm outlined in Section 4 and sketch the proof ideas.

For each step, we first explain the detailed algorithm, and
list the deterministic conditions on the underlying parame-
ters as well as on the exact moments for the step to work
correctly. Then we show that these deterministic conditions
are satisfied with high probability over the ρ-perturbation of
the parameters in the smoothed analysis setting. In order to
analyze the sample complexity, we further show that when
we are given the empirical moments which are close to the
exact moments, the output of the step is also close to that
in the exact case.

In particular we show the correctness and the stability of
each step in the algorithm with two main lemmas: the first
lemma shows that with high probability over the random
perturbation of the covariance matrices, the exact moments
satisfy the deterministic conditions that ensure the correct-
ness of each step; the second lemma shows that when the
algorithm for each step works correctly, it is actually stable
even when the moments are estimated from finite samples
and have only inverse polynomial accuracy to the exact mo-
ments.

Step 1: Span Finding.
Given the 4-th order moments M̃4, Step 1 finds the span

of covariance matrices U as defined in (7). Note that by

definition of the unfolded moments X̃4 in (1), the subspace

U coincides with the column span of the matrix X̃4.

By Lemma 3.7, we know that the entries in M̃4 are linear

mappings of entries in X̃4. Since the matrix X̃4 is of low rank

(k � n2), this corresponds to the matrix sensing problem
first studied in Recht et al. (2010). In general, matrix sens-
ing problems can be hard even when we have many linear
observations (Hardt et al. (2014b)). Previous works (Recht
et al. (2010); Hardt et al. (2014a); Jain et al. (2013)) showed
that if the linear mapping satisfy matrix RIP property, one

can uniquely recover X̃4 from M̃4.
However, properties like RIP do not hold in our setting

where the linear mapping is determined by Isserlis’ Theo-
rem. We can construct two different mixtures of Gaussians
with different unfolded moments X̃4, but the same folded

moment M̃4. Therefore the existing matrix recovery algo-
rithm cannot be applied, and we need to develop new tools
by exploiting the special moment structure of Gaussian mix-
tures.

Step 1 (a). Find the Span of a Subset of Columns of the
Covariance Matrices.

The key observation for this step is that if we hit M̃4 with
three basis vectors, we get a vector that lies in the span of
the columns of the covariance matrices:

Claim 5.1. For a mixture of zero-mean Gaussians G =
{(ωi, 0,Σ(i))}i∈[k] ∈ Gn,k, the one-dimensional slices of the
4-th order moments M4 are given by: ∀j1, j2, j3 ∈ [n]

M4(ej1 , ej2 , ej3 , I)

=

k∑
i=1

ωi
(

Σ
(i)
j1,j2

Σ
(i)

[:,j3]
+ Σ

(i)
j1,j3

Σ
(i)

[:,j2]
+ Σ

(i)
j2,j3

Σ
(i)

[:,j1]

)
. (9)

In particular, if we pick the indices j1, j2, j3 in the index
set H, the vector M4(ej1 , ej2 , ej3 , I) lies in the desired span

S =
{

Σ
(i)

[:,j] : i ∈ [k], j ∈ H
}

.

We shall partition the set H into three disjoint subsets
H(i) of equal size

√
n/3, and pick ji ∈ H(i) for i = 1, 2, 3. In

this way, we have (|H|/3)3 = Ω(n1.5) such one-dimensional
slices of M4, which all lie in the desired subspace S. More-
over, the dimension of the subspace S is at most k|H| �
n1.5. Therefore, with the ρ-perturbed parameters Σ̃(i)’s, we

can expect that with high probability the slices of M̃4 span
the entire subspace S.

Condition 5.2 (Deterministic condition). Let Q̃S ∈
Rn×(|H|/3)3 be the matrix whose columns are the vectors
M̃4(ej1 , ej2 , ej3 , I) for ji ∈ H(i). If the matrix Q̃S achieves
its maximal column rank k|H|, we can find the desired span

S defined in (5) by the column span of matrix Q̃S.

We first show that this deterministic condition is satisfied
with high probability by bounding the k|H|-th singular value

of Q̃S with smoothed analysis.

Lemma 5.3 (Correctness). Given the exact 4-th or-

der moments M̃4, for any index set H of size |H| =
√
n,

With high probability, the k|H|-th singular value of Q̃S is at
least Ω(ωoρ

2n).

The proof idea involves writing the matrix Q̃S as a prod-
uct of three matrices, and using the results on spectral prop-
erties of random matrices Rudelson and Vershynin (2009) to
show that with high probability the smallest singular value
of each factor is lower bounded.

Since this step only involves the singular value decompo-

sition of the matrix Q̃S , we then use the standard matrix
perturbation theory to show that this step is stable:

Lemma 5.4 (Stability). Given the empirical estima-

tor of the 4-th order moments M̂4 = M̃4 +E4, suppose that
the entries of E4 have absolute value at most δ. Let the

columns of matrix S̃ ∈ Rn×k|H| be the left singular vector

of Q̃S, and let Ŝ be the corresponding matrix obtained with

M̂4. When δ is inverse polynomially small, the distance be-
tween the two projections ‖ProjŜ −ProjS̃‖ is upper bounded

by O
(
n1.25δ/σk|H|(Q̃S)

)
.

Remark 5.5. Note that we need the high dimension as-
sumption (n � k) to guarantee the correctness of this step:
in order to span the subspace S, the number of distinct vec-
tors should be equal or larger than the dimension of the sub-
space, namely |H|3 ≥ k|H|; and the subspace should be non-
trivial, namely k|H| < n. These two inequalities suggest that
we need n ≥ Ω(k1.5). However, we used the stronger as-
sumption n ≥ Ω(k2) to obtain the lower bound of the small-
est singular value in the proof.

Step 1 (b). Find the Span of Projected Covariance Ma-
trices.

In this step, we continue to use the structural properties
of the 4-th order moments. In particular, we look at the
two-dimensional slices of M4 obtained by hitting it with two
basis vectors:

Claim 5.6. For a mixture of zero-mean Gaussians G =
{(ωi, 0,Σ(i))}i∈[k] ∈ Gn,k, the two-dimensional slices of the
4-th order moments M4 are given by: ∀j1, j2 ∈ [n],

M4(ej1 , ej2 , I, I)

=

k∑
i=1

ωi
(

Σ
(i)
j1,j2

Σ(i) + Σ
(i)

[:,j1]
(Σ

(i)

[:,j2]
)> + Σ

(i)

[:,j2]
(Σ

(i)

[:,j1]
)>
)
,

(10)

Note that if we take the indices j1 and j2 in the index set
H, the slice M4(ej1 , ej2 , I, I) is almost in the span of the co-
variance matrices, except 2k additive rank-one terms in the

form of Σ
(i)

[:,j1]
(Σ

(i)

[:,j2]
)>. These rank-one terms can be elim-

inated by projecting the slice to the subspace S⊥ obtained
in Step 1 (a), namely, ∀j1, j2 ∈ H,

vec(ProjS⊥M4(ej1 , ej2 , I, I)) =

k∑
i=1

ωiΣ
(i)
j1,j2

vec(ProjS⊥Σ(i)),

and this projected two-dimensional slice lies in the desired
span US as defined in (6). Moreover, there are

(|H|+1
2

)
=

Ω(n) such projected two-dimensional slices, while the di-
mension of the desired span US is at most k.

Condition 5.7 (Deterministic condition).

Let Q̃US ∈ Rn2×|H|(|H|+1)/2 be a matrix whose (j1, j2)-th
column for is equal to the projected two-dimensional slice

vec(ProjS⊥M̃4(ej1 , ej2 , I, I)),

for j1 ≤ j2 and j1, j2 ∈ H. If the matrix Q̃US achieves its
maximal column rank k, the desired span US defined in (6)

is given by the column span of the matrix Q̃US .

We show that this deterministic condition is satisfied by

bounding the k-th singular value of Q̃US in the smoothed
analysis setting:

Lemma 5.8 (Correctness). Given the exact 4-th or-

der moments M̃4, with high probability, the k-th singular

value of Q̃US is at least Ω(ωoρ
2n1.5).

Similar to Lemma 5.3, the proof is based on writing the
matrix QUS as a product of three matrices, then bound their
k-th singular values using random matrix theory. The sta-
bility analysis also relies on the matrix perturbation theory.

Lemma 5.9 (Stability). Given the empirical 4-th or-

der moments M̂4 = M̃4 + E4, assume that the absolute
value of entries of E4 are at most δ2. Also, given the out-
put ProjŜ⊥ from Step 1 (a), and assume that ‖ProjŜ⊥ −
ProjS̃⊥‖ ≤ δ1. When δ1 and δ2 are inverse polynomially
small, we have

‖ProjÛS − ProjŨS‖ ≤ O
(
n2.5 (δ2 + 2δ1) /σk(Q̃US)

)
.

Step 1 (c). Merge U1,U2 to get the span of covariance
matrices U .

Note that for a given index set H, the span US obtained in
Step 1 (b) only gives partial information about the span of
the covariance matrices. The idea of getting the span of the
full covariance matrices is to obtain two sets of such partial
information and then merge them.

In order to achieve that, we repeat Step 1 (a) and Step 1
(b) for two disjoint sets H1 and H2, each of size

√
n. The

two subspace S1 and S2 thus correspond to the span of two
disjoint sets of covariance matrix columns. Therefore, we
can hope that U1 and U2, the span of covariance matrices
projected to S⊥1 and S⊥2 contain enough information to re-
cover the full span U .

In particular, we prove the following claim:

Condition 5.10 (Deterministic condition). Let the
columns of two (unknown) matrices V1 ∈ Rn×k and V2 ∈
Rn×k form two basis of the same k-dimensional (unknown)
subspace U ⊂ Rn, and let U denote an arbitrary orthonor-
mal basis of U . Given two s-dimensional subspaces S1 and
S2, denote S3 = S⊥1 ∪ S⊥2 . Given two projections of U
onto the two subspaces S>1 and S>2 : U1 = ProjS⊥

1
V1 and

U2 = ProjS⊥
2
V2. If σ2s([S1, S2]) > 0 and σk(ProjS3

U) > 0,

there is an algorithm for finding U robustly.

The main idea in the proof is that since s is not too large,
the two subspaces S⊥1 and S⊥2 have a large intersection. Us-
ing this intersection we can “align” the two basis V1 and
V2 and obtain V †1 V2, and then it is easy to merge the two
projections of the same matrix (instead of a subspace).

Moreover, we show that when applying this result to the
projected span of covariance matrices, we have s = k|H| ≤
n/3, and the two deterministic conditions σ2s([S1, S2]) > 0
and σk(ProjS3

V1) > 0 are indeed satisfied with high proba-
bility over the parameter perturbation.

Step 2. Unfold the moments to get X̃4 and X̃6.
We show that given the span of covariance matrices U

obtained from Step 1, finding the unfolded moments X̃4, X̃6

is reduced to solving two systems of linear equations.

Recall that the challenge of recovering X̃4 and X̃6 is that
the two linear mappings F4 and F6 defined in (4) are not
linearly invertible. The key idea of this step is to make use
of the span U to reduce the number of variables. Note that
given the basis U ∈ Rn2×k of the span of the covariance
matrices, we can represent each vectorized covariance matrix

as Σ̃(i) = Uσ̃(i). Now Let Ỹ4 ∈ Rk×ksym and Ỹ4 ∈ Rk×k×ksym

denote the unfolded moments in this new coordinate system:

Ỹ4 :=

k∑
i=1

ω̃iσ̃
(i)⊗2, Ỹ6 =

k∑
i=1

ω̃iσ̃
(i) ⊗3 .

Note that once we know Ỹ4 and Ỹ6, the unfolded moments

X̃4 and X̃6 are given by X̃4 = UỸ4U
> and X̃6 = Ỹ6(U>, U>, U>).

Therefore, after changing the variable, we need to solve the
two linear equation systems given in (8) with the variables

Ỹ4 and Ỹ6.
This change of variable significantly reduces the number of

unknown variables. Note that the number of distinct entries
in Ỹ4 and Ỹ6 are k2 =

(
k+1
2

)
and k3 =

(
k+2
3

)
, respectively.

Since k2 ≤ n4 and k3 ≤ n6, we can expect that the linear

mapping from Ỹ4 to M̃4 and the one from Ỹ6 to M̃6 are
linearly invertible. This argument is formalized below.

Condition 5.11 (Deterministic condition). Rewrite
the two systems of linear equations in (8) in their canonical

form and let H̃4 ∈ Rn4×k2 and H̃6 ∈ Rn6×k3 denote the co-

efficient matrices. We can obtain the unfolded moments X̃4

and X̃6 if the coefficient matrices have full column rank.

We show with smoothed analysis that the smallest singu-
lar value of the two coefficient matrices are lower bounded
with high probability:

Lemma 5.12 (Correctness). With high probability over
the parameter random perturbation, the k2-th singular value

of the coefficient matrix H̃4 is at least Ω(ρ2n/k), and the

k3-th singular value of the coefficient matrix H̃6 is at least
Ω(ρ3(n/k)1.5).

To prove this lemma we rewrite the coefficient matrix as
product of two matrices and bound their smallest singu-
lar values separately. One of the two matrices corresponds

to a projection of the Kronecker product Σ̃ ⊗kr Σ̃. In the
smoothed analysis setting, this matrix is not necessarily in-
coherent. In order to provide a lower bound to its smallest
singular value, we further apply a carefully designed pro-
jection to it, and then we use the concentration bounds
for Gaussian chaoses to show that after the projection its
columns are incoherent, finally we apply Gershgorin’s The-
orem to bound the smallest singular value 6.

When implementing this step with the empirical moments,
we solve two least squares problems instead of solving the
system of linear equations. Again using results in matrix
perturbation theory and using the lower bound of the small-
est singular values of the two coefficient matrices, we show
the stability of the solution to the least squares problems:

6Note that the idea of unfolding using system of linear equa-
tions also appeared in the work of Jain and Oh (2014). How-
ever, in order to show the system of linear equations in their
setup is robust, i.e., the coefficient matrix has full rank, they
heavily rely on the incoherence assumption, which we do not
impose in the smoothed analysis setting.

Lemma 5.13 (Stability). Given the empirical moments

M̂4 = M̃4 + E4, M̂6 = M̃6 + E6, and suppose that the ab-
solute value of entries of E4 and E6 are at most δ1. Let

Û , the output of Step 1, be the estimation for the span

of the covariance matrices, and suppose that ‖Û − Ũ‖ ≤
δ2. Let Ŷ4 and Ŷ6 be the least squares solution respectively.
When δ1 and δ2 are inverse polynomially small, we have

‖Ỹ4 − Ŷ4‖F ≤ O(
√
n4(δ1 + δ2/σmin(H̃4)) and ‖Ỹ6 − Ŷ6‖F ≤

O(
√
n6(δ1 + δ2/σmin(H̃6)).

Step 3. Tensor Decomposition.

Claim 5.14. Given Ỹ4, Ỹ6 and Ũ , the symmetric tensor
decomposition algorithm can correctly and robustly find the
mixing weights ω̃i’s and the vectors σ̃i’s, up to some un-
known permutation over [k], with high probability over both
the randomized algorithm and the parameter perturbation.

Proof Sketch for the Zero-mean Case.
Theorem 3.5 follows from the previous smoothed analysis

and stability analysis lemmas for each step.
First, exploiting the randomness of parameter perturba-

tion, the smoothed analysis lemmas show that the deter-
ministic conditions, which guarantee the correctness of each
step, are satisfied with high probability. Then using concen-
tration bounds of Gaussian variables, we show that with high
probability over the random samples, the empirical moments

M̂4 and M̂6 are entrywise δ-close to the exact moments M̃4

and M̃6. In order to achieve ε accuracy in the parameter es-
timation, we choose δ to be inverse polynomially small, and
therefore the number of samples required will be polynomial
in the relevant parameters. The stability lemmas show how
the errors propagate only “polynomially” through the steps
of the algorithm, which is visualized in Figure 1.

6. ALGORITHM OUTLINE FOR LEARN-
ING MIXTURE OF GENERAL GAUSSIANS

In this section, we briefly discuss the algorithm for learn-
ing mixture of general Gaussians. Figure 2 shows the inputs
and outputs of each step in this algorithm. Many steps share
similar ideas to those of the algorithm for the zero-mean case
in previous sections.

Step 1. Find Z̃ and Σ̃o .
Similar to Step 1 in the zero-mean case, this step makes

use of the structure of the 4-th order moments M̃4, and is
achieved in three small steps:

(a) For a subset H ⊂ [n] of size |H| =
√
n, find the span:

S = span
{
µ̃(i), Σ̃

(i)

[:,j] : i ∈ [k], j ∈ H
}
⊂ Rn. (11)

(b) Find the span of the covariance matrices with the columns
projected onto S⊥, namely,

US = span
{

vec(ProjS⊥Σ̃(i)) : i ∈ [k]
}
⊂ Rn

2

. (12)

(c) For disjoint subsets H1 and H2, repeat Step 1 (a) and
Step 1 (b) to obtain U1 and U2, the span of the covari-
ance matrices projected onto the subspaces S⊥1 and

S⊥2 . The intersection of the two subspaces U1 and U2
gives the span of the mean vectors

Z̃ = span
{
µ̃(i), i ∈ [k]

}
.

Merge the two subspaces U1 and U2 to obtain the span
of the covariance matrices projected to the subspace

orthogonal to Z̃, namely

Σ̃o = span
{

ProjZ̃⊥Σ̃(i)ProjZ̃⊥ : i ∈ [k]
}
.

Step 2. Find the Covariance Matrices in the Subspace
Z̃⊥ and the Mixing Weights ω̃i’s.

The key observation of this step is that when the sam-
ples are projected to the subspace orthogonal to all the
mean vectors, they are equivalent to samples from a mix-

ture of zero-mean Gaussians with covariance matrices Σ̃
(i)
o =

ProjZ̃⊥Σ̃(i)ProjZ̃⊥ and with the same mixing weights ω̃i’s.

Therefore, projecting the samples to Z̃⊥, the subspace or-
thogonal to the mean vectors, and use the algorithm for the

zero-mean case, we can obtain Σ̃
(i)
o ’s, the covariance matri-

ces projected to this subspace, as well as the mixing weights
ω̃i’s.

Step 3. Find the means.
With simple algebra, this step extracts the projected co-

variance matrices Σ̃
(i)
o ’s from the 3-rd order moments M̃3,

the mixing weights ω̃i and the projected covariance matrices

Σ̃
(i)
o ’s obtained in Step 2.

Step 4. Find the full covariance matrices.
In Step 2, we obtained Σ̃

(i)
o , the covariance matrices pro-

jected to the subspace orthogonal to all the means. Note

that they are equal to matrices (Σ̃(i)+ µ̃(i)(µ̃(i))>) projected
to the same subspace. We claim that if we can find the span

of these matrices ((Σ̃(i) + µ̃(i)(µ̃(i))>)’s), we can get each

matrix (Σ̃(i) + µ̃(i)(µ̃(i))>), and then subtracting the known

rank-one component to find the covariance matrix Σ̃(i). This
is similar to the idea of merging two projections of the same
subspace in Step 1 (c) for the zero-mean case.

The idea of finding the desired span is to construct a 4-th
order tensor:

M̃ ′4 = M̃4 + 2

k∑
i=1

ω̃i(µ̃
(i)⊗4),

which corresponds to the 4-th order moments of a mix-

ture of zero-mean Gaussians with covariance matrices Σ̃(i) +
µ̃(i)(µ̃(i))> and the same mixing weights ω̃i’s. Then we
can then use Step 1 of the algorithm for the zero-mean
case to obtain the span of the new covariance matrices, i.e.

span{Σ̃(i) + µ̃(i)(µ̃(i))> : i ∈ [k]}.

7. CONCLUSION
In this paper we give the first efficient algorithm for learn-

ing mixture of general Gaussians in the smoothed analysis
setting. In the algorithm we developed new ways of extract-
ing information from lower-order moment structure. This
suggests that although the method of moments often in-
volves solving systems of polynomial equations that are in-

Figure 1: Flow of the algorithm for learning mixture of zero-mean Gaussians.

Figure 2: Flow of the algorithm for learning mixtures of general Gaussians.

tractable in general, for natural models there is still hope of
utilizing their special structure to obtain algebraic solution.

Smoothed analysis is a very useful way of avoiding degen-
erate examples in analyzing algorithms. In the analysis, we
proved several new results for bounding the smallest singular
values of structured random matrices. We believe the lem-
mas and techniques can be useful in more general settings.

Our algorithm uses only up to 6-th order moments. We
conjecture that using higher order moments can reduce the
number of dimension required to n ≥ Ω(k1+ε), or maybe
even n ≥ Ω(kε).

Acknowledgements
We thank Santosh Vempala for many insights and for help
in earlier attempts at solving this problem, and we thank
the anonymous reviewers for their careful reading of our
manuscript and their many comments and suggestions which
helped us to improve the manuscript.

References
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M.

Kakade, and Matus Telgarsky. Tensor decompositions
for learning latent variable models. Journal of Machine
Learning Research, 15:2773–2832, 2014. URL http://

jmlr.org/papers/v15/anandkumar14b.html.

Joseph Anderson, Mikhail Belkin, Navin Goyal, Luis
Rademacher, and James Voss. The more, the merrier:
the blessing of dimensionality for learning large gaussian
mixtures. arXiv preprint arXiv:1311.2891, 2013.

Mikhail Belkin and Kaushik Sinha. Learning gaussian
mixtures with arbitrary separation. arXiv preprint
arXiv:0907.1054, 2009.

Mikhail Belkin and Kaushik Sinha. Polynomial learning of
distribution families. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on, pages
103–112. IEEE, 2010.

Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Ar-
avindan Vijayaraghavan. Smoothed analysis of tensor de-

compositions. In Proceedings of the 46th ACM symposium
on Theory of computing, 2014.

S Charles Brubaker and Santosh S Vempala. Isotropic pca
and affine-invariant clustering. In Building Bridges, pages
241–281. Springer, 2008.

Siu-On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xi-
aorui Sun. Efficient density estimation via piecewise poly-
nomial approximation. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, STOC ’14,
pages 604–613, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2710-7. doi: 10.1145/2591796.2591848. URL
http://doi.acm.org/10.1145/2591796.2591848.

Sanjoy Dasgupta. Learning mixtures of gaussians. In Foun-
dations of Computer Science, 1999. 40th Annual Sympo-
sium on, pages 634–644. IEEE, 1999.

Sanjoy Dasgupta and Leonard J Schulman. A two-round
variant of em for gaussian mixtures. In Proceedings of the
Sixteenth conference on Uncertainty in artificial intelli-
gence, pages 152–159. Morgan Kaufmann Publishers Inc.,
2000.

Jon Feldman, Rocco A Servedio, and Ryan O’Donnell. Pac
learning axis-aligned mixtures of gaussians with no sep-
aration assumption. In Learning Theory, pages 20–34.
Springer, 2006.

Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Ben-
jamin Weitz. Computational limits for matrix completion.
In Proceedings of The 27th Conference on Learning The-
ory, pages 703–725, 2014a.

Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Ben-
jamin Weitz. Computational limits for matrix completion.
In Proceedings of The 27th Conference on Learning The-
ory, COLT 2014, Barcelona, Spain, June 13-15, 2014,
2014b.

Daniel Hsu and Sham M Kakade. Learning mixtures of
spherical gaussians: moment methods and spectral de-
compositions. In Proceedings of the 4th conference on In-

http://jmlr.org/papers/v15/anandkumar14b.html
http://jmlr.org/papers/v15/anandkumar14b.html
http://doi.acm.org/10.1145/2591796.2591848

novations in Theoretical Computer Science, pages 11–20.
ACM, 2013.

Prateek Jain and Sewoong Oh. Learning mixtures of discrete
product distributions using spectral decompositions. In
Proceedings of The 27th Conference on Learning Theory,
pages 824–856, 2014.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi.
Low-rank matrix completion using alternating minimiza-
tion. In Proceedings of the forty-fifth annual ACM sym-
posium on Theory of computing, pages 665–674. ACM,
2013.

Adam Tauman Kalai, Alex Samorodnitsky, and Shang-Hua
Teng. Learning and smoothed analysis. In Foundations
of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on, pages 395–404. IEEE, 2009.

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant.
Efficiently learning mixtures of two gaussians. In Proceed-
ings of the 42nd ACM symposium on Theory of comput-
ing, pages 553–562. ACM, 2010.

Geoffrey McLachlan and David Peel. Finite mixture models.
John Wiley & Sons, 2004.

Ankur Moitra and Gregory Valiant. Settling the polynomial
learnability of mixtures of gaussians. In Foundations of
Computer Science (FOCS), 2010 51st Annual IEEE Sym-
posium on, pages 93–102. IEEE, 2010.

Karl Pearson. Contributions to the mathematical theory of
evolution. Philosophical Transactions of the Royal Society
of London. A, pages 71–110, 1894.

H Permuter, J Francos, and H Jermyn. Gaussian mixture
models of texture and colour for image database retrieval.
In Acoustics, Speech, and Signal Processing, 2003. Pro-
ceedings.(ICASSP’03). 2003 IEEE International Confer-
ence on, volume 3, pages III–569. IEEE, 2003.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guar-
anteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization. SIAM review, 52(3):471–
501, 2010.

Douglas A Reynolds and Richard C Rose. Robust text-
independent speaker identification using gaussian mix-
ture speaker models. Speech and Audio Processing, IEEE
Transactions on, 3(1):72–83, 1995.

Mark Rudelson and Roman Vershynin. Smallest singu-
lar value of a random rectangular matrix. Communi-
cations on Pure and Applied Mathematics, 62(12):1707–
1739, 2009.

Arora Sanjeev and Ravi Kannan. Learning mixtures of arbi-
trary gaussians. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages 247–257.
ACM, 2001.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis
of algorithms: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM (JACM), 51(3):
385–463, 2004.

D Michael Titterington, Adrian FM Smith, Udi E Makov,
et al. Statistical analysis of finite mixture distributions,
volume 7. Wiley New York, 1985.

Gregory John Valiant. Algorithmic approaches to statistical
questions. PhD thesis, University of California, Berkeley,
2012.

Santosh Vempala and Grant Wang. A spectral algorithm
for learning mixture models. Journal of Computer and
System Sciences, 68(4):841–860, 2004.

Daniel Zoran and Yair Weiss. Natural images, gaussian
mixtures and dead leaves. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1736–
1744. Curran Associates, Inc., 2012. URL

	Introduction
	Notations
	Main results
	Smoothed Analysis for Learning Mixture of Gaussians
	Moment Structure of Mixture of Gaussians

	Algorithm Outline for Learning Mixture of Zero-Mean Gaussians
	Implementing the Steps for Mixture of Zero-Mean Gaussians
	Algorithm Outline for Learning Mixture of General Gaussians
	Conclusion

