

(Rank-k 3-way tensor)

р	er-	reso			nof	f th	e grid
Qingqing HuangSham M KakadeMITUniversity of Whashington							
Algorithm							
Input: Cutoff freq R , number of measurements m . Output: Estimates $\{\widehat{w}_j, \widehat{\mu}^{(j)} : j \in [k]\}.$							2-D example
 Take measurements at random s: Let S = {s⁽¹⁾,,s^(m)} be m i.i.d. samples from the Gaussian N(0, R²I_{d×d}). Set s^(m+n) = e_n for all n ∈ [d] and s^(m+n+1) = 0. Denote m' = m + d + 1. Take another random samples v from the unit sphere, set v⁽¹⁾ = v and v⁽²⁾ = 2v. Construct a tensor F̃ ∈ C^{m'×m'×3}: F̃_{n1,n2,n3} = f̃(s) _{s=s⁽ⁿ¹⁾+s⁽ⁿ²⁾+v⁽ⁿ³⁾}. Tensor Decomposition: Set (Ṽ_{S'}, D̂_w) = TensorDecomp(F̃). For j = 1,,k, set [Ṽ_{S'}]_j = [Ṽ_{S'}]_j/[Ṽ_{S'}]_{m',j} Read of estimates: For j = 1,,k, set µ^(j) = Real(log([Ṽ_S]_[m+1:m+d,j])/(iπ)). Set Ŵ = arg min_{W∈C^k} F̂ − Ṽ_{S'} ⊗ Ṽ_{S'} ⊗ Ṽ_dD_w _F. 							$\Rightarrow Phase transition that the second $
♦ Sample complexity determined by condition number of F and V _S ♦ Random samples with frequency range $R = O(1/\Delta)$ ♦ Number of measurements does not depend on Δ							Applic <hr/> <hr <hr=""/> <hr/>
SDP	$\begin{array}{c} cutoff freq \\ \frac{1}{\Delta} \end{array}$	d = 1 measurements $k \log(k) \log(\frac{1}{\Delta})$	runtime $poly(\frac{1}{\Delta},k)$	$\frac{cutoff freq}{\frac{C_d}{\Delta_{\infty}}}$	$d \ge 1$ measurements $(\frac{1}{\Delta_{\infty}})^d$	runtime $poly((\frac{1}{\Delta_{\infty}})^d, k)$	(Parameters) ♦ Problem: what (Minimum Separation)
MP	$\frac{1}{\Delta}$	$\frac{1}{\Delta}$	$\left(\frac{1}{\Delta}\right)^3$	-	-	-	(Moment generating
Table 1: Comparison of results. We are implicitly using $O(\cdot)$ notation here. Main results \land Main Theorem (stability of our algorithms)							(Empirical MGF) q ♦ Corollary: Rec
Theorem 1. For a fixed error probability δ , the algorithm achieves stable recovery with number of measurements and runtime both bounded by $O((k \log(k) + d)^2)$. The frequency range of the measurements are bounded by $O(1/\Delta)$ (ignoring log factors).							poly time

Key Lemma (condition number of random Vandermonde)

Lemma 1. For fixed ϵ_x , fix R s.t. $R \geq \frac{\sqrt{2\log(k/\epsilon_x)}}{\pi \Lambda}$ for $d \geq 2$, and $R \geq 1$ $\frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ be } m \text{ independent samples} \\ \frac{\sqrt{2\log(1+2/\epsilon_x)}}{\pi\Delta} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ for } d = 1. \text{ Let } S = \{s^{(1)}, \dots, s^{(m)}\} \text{ for } d = 1. \text{ for } d$ of the Gaussian vector $s \sim \mathcal{N}(0, R^2 I_{d \times d})$. For $m \geq \frac{k}{\epsilon_r} \sqrt{8 \log \frac{k}{\delta_s}}$, with prob- $\left| \diamond E. J. Cand`es and C. Fernandez-Granda. Towards a mathematical theory of super-resolution.$ ability at least $1 - \delta_s$ over the random sampling, we can bound the condition \diamond S. Leurgans, R. Ross, and R. Abel. A decomposition for three-way arrays. SIAM Journal on Matrix number of the factor matrix V_S by $cond_2(V_S) \leq \sqrt{\frac{1+2\epsilon_x}{1-2\epsilon_x}}$.

Communications on Pure and Applied Mathematics, 67(6):906–956, 2014. Analysis and Applications, 14(4):1064–1083, 1993. S. Dasgupta. Learning mixtures of gaussians. In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 634–644. IEEE, 1999.

Simulation Results

sitions

just one SVD, no SDP!

lication to Learning GMMs

ture of d-dim spherical Gaussians

 $\{(w_j, \mu^{(j)}, \Sigma^{(j)} = \sigma^2 I_{d \times d})\}_{i \in [k]}$

nat condition permits efficient learning algorithm paration) $\Delta_G = \frac{\min_{j \neq j'} \|\mu^{(j)} - \mu^{(j')}\|_2}{\sigma},$

ng function)

 $\phi_X(s) = \mathbb{E}[e^{i < x, s > j}] = \sum_{j \in [k]} w_j e^{-\frac{1}{2}\sigma^2 \|s\|_2^2 + i < \mu^{(j)}, s > j}.$ $\widehat{\phi}_X(s) = \frac{1}{N} \sum_{l \in [N]} e^{i \langle x_l, s \rangle}.$

Lecover the scaling result of (Dasgupta 99)

ime algorithm if $\Delta_G \ge \Omega(d^{1/2})$

Future Works

ea to learn general case well-separated GMMs \diamond Reduce sample complexity to info optimal $\Omega(kd)$

Selected references