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<> Problem: recover a superposition of point sources Input: Cutoff freq R, number of measurements m.
| ) < 2-D example
(k-sum d-dim point sources) x(t) = Z?:l W;0,) - Output: Estimates {w;, u"’ : j € [k|}. .
using bandlimited and noise corrupted measurements. 1. Take measurements at random s: O;
| ot es L @) s Let S = {3(1>, e s(m)} be m 1.1.d. samples from the Gaussian |
(Fourier measurements) f(s) = J,cpa €7 <" a(dt) = )5 wje™ =752, N(0, R?I;v4). Set s+ = ¢, for all n € [d] and s(m*t?+1) = 0. s g
~ Denote m’ = m +d + 1. o
(Measurement noise)  f(s) = f(s) + 2(s), |2(s)] <€, Vs. <> Phase transitions

Take another random samples v from the unit sphere,
set v(1) = v and v(®) = 2v. Construct a tensor F' € C™ *™ x3.

< Goal: 1. use coarse Fourier measurements (cutoff freq) N N e
2. take small number of measurements Enynang = [(8) ‘S:S<n1>+5<n2>+v<n3>- X o
. N 1 1
3. run quickly. 2. Tensor Decomposition: Set (Vs/, D,,) = TensorDecomp(F). A o A o
(Minimum separation) A = ming [|u9) — pt)]| For j =1,....k, set [Va]; = [Vol;/[Verlmr : o w
< Stable recovery: 3. Read of estimates: For j = 1,...,k, set cutoff R measurements m
minmaX{Hﬁ(j) —pTON, e [k]} < poly(d, k)e., ﬂ(g) = Real(log([VS][m+1:m+d,j])/(iﬂ))°

L Qep T B_0. ot o0D < Runs fast, just one SVD, no SDP!
. . t — . k — / / W ]
Previous works ¢ arg miny eck |7 — Vs @ Vsr @ VaDu||F

& Super-resolution, 1-d % Sample complexity determined by condition number of F and Vs Application to Learning GMMs

4 Take uniform samples on a grid < Random samples with frequency range R = O(1/A)

{f(=N), f(=N +1),..., f(N = 1), f(N)} < Number of measurements does not depend on A < Setup: k-mixture of d-dim spherical Gaussians
< Cut-off freq determined by the minimum separation (Parameters) {(w; 1) ¥ =21, 1) bieiw

N =Q(x) d=1 d>1

g Comp ressed SenSing off the gI’ld cutofl freq | measurements runtime cutoff freq | measurements runtime <> PrOblem: What C()nditi()n p ermits efﬁCient leaming algOrithm
use klog(k) random samples to recover 2N samples . , . GY G
SDP ~ klog(k)log(<x) | poly(+,k) o (=) poly((x=)", k) (Minimum Separation) Ao = min; ./ ||p™" —p ”27
< Multiple dimensions P (1) _ _ _ d
< Pr(?ject to mu@tipole 1-d problems (reduces s§paration) | Ours 1 (Klog(k))2 | (klog(k)2 | ¢ | (hlog(k) +d)? | (klog(k) +d)? | (Moment generating function) |
< Grid the multi-dim space (computationally expensive) bx(s) = Blei<es>] = T S o— 20 |sl|3+i<u s>
both approaches 0 (po ly ( k)d) Table 1: Comparison of results. We are implicitly using O(-) notation here. ~ | J
(Empirical MGF)  ¢x(s) = & D_jeny €<70°7
Basic 1deas of our work Main results .
< Corollary: Recover the scaling result of (Dasgupta 99)
’ ix—Penci <> Main Theorem (stability of our algorithm . . .
< Run Pronyds method l (Mlatrix—Pencil / MUSIC / ESPRIT) ( Yy g ) poly fime algorl thm if Ag > O ( 71 /2)
Ol Fancoin Samples Theorem 1. For a fized error probability o, the algorithm achieves
<> Skip the intermediate step of recovering all the Q(N d) samples stable recovery with number of measurements and runtime both bounded Future WOl‘kS
on the hyper-grid, random samples — estimate point sources by O((klog(k) + d)?). The frequency range of the measurements are

bounded by O(1/A) (ignoring log factors). < Apply the idea to learn general case well-separated GMMs

<>1Sample at S such that ' admits the tensor decomposition: : : :
D ; <~ Key Lemma (condition number of random Vandermonde) |% Reduce sample complexity to info optimal Q(kd)

F=Vs ® Vg & (VoD,), (Rank-k 3-way tensor)
2log(k /ey,
- N (1 . B (1 - Lemma 1. For fized €¢,, fix R s.t. R > V2log(k/cx) ord > 2, and R > SEIECtEd I‘Eferences
(1) (1) (k) o(1)
plT<p 7,807 > plm<p’ 800> \/ 4 TA ?
| | 2log(142/€,) - B 1 m .
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