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MOTIVATION

Opinion network

Which consumers to survey?



MOTIVATION

Economic input-output network



MOTIVATION

Economic input-output network
Which sectors are more volatile?

Which sectors amplify local shocks the most?



MOTIVATION

Noisy sensor fusion
Which nodes to measure?

Which communication links are critical?

L=A-A
r = —Lx




QUESTIONS

 How to measure volatility?

« Which networks are more volatile?

* Which nodes are more robust?

« Which links are critical?




SETUP Stable A
t(t) = Az(t) + w(t), te€[0,+00)
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SETUP Stable A
t(t) = Az(t) + w(t), t € [0,400)

 Measure volatility using H2 norm

» Variance amplification Var(w(t)) — Var(z(t))

- Threshold w(t) € Lo — z(t) € Lo




SETUP StableA
t(t) = Az(t) + w(t), te€[0,+00)
« How to compute H2 norm
Elw(t)w(t)] = Wé(t — 1),

AP+ PA'"+ W = 0.
el N

State Noise
covariance matrix covariance matrix
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SETUP StableA
t(t) = Az(t) + w(t), te€[0,+00)
« How to compute H2 norm
Elw(t)w(t)] = Wé(t —t'),
AP+ PA'+W = 0.

State Noise
covariance matrix covariance matrix

1.I.D noise: W =1 Aggregate noise: W = 11’




SETUP StableA
t(t) = Azx(t) + w(t), te€ [0,+00)
How to compute H2 norm
Elw(t)w(t)] = Wé(t —t'),
AP+ PA'+W = 0.

State Noise
covariance matrix covariance matrix
1.I.D noise: W =1 Aggregate noise: W = 11’
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How to measure volatility?

New volatility measures yid

A new measure for link criticality
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GRAPH-BASED
PROPERTIES ]

If the linear dynamics is first-order noisy consensus
z(t) = Az(t) + w(t), t € [0,+00)

A=—(D-A).
Network Graph

Linear Dynamics Laplacian Matrix
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FUNDAMENTAL
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For network system with first order linear dynamics

Which types of networks are more volatile?

* A has small stability margin

Which nodes are more robust?

* # degree, criticality

Which links are critical?

» # betweenness
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GRAPH-BASED
PROPERTIES i

If the linear dynamics is first-order consensus

A=—(D-A).
Network Graph
Linear Dynamics Laplacian Matrix

Degree based approximations of volatility measures
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RANDOM
NETWORKS
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RANDOM
NETWORKS
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RANDOM
NETWORKS
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For first order consensus dynamics

Which types of networks are more volatile?

« = Heterogeneous degree distribution,
« = high modularity,
« =]oosely connected

Which nodes are more robust?

* = Hubs

Which links are critical?

« = |nformation centrality,
= petweenness




CONCLUSION

Graph based “centrality measures” do not lead to
meaningful implications for real dynamics over
networks.

One should examine the real dynamics to measure
network robustness / volatility, link criticality.

For linear dynamics over networks, we propose
volatility measures which can offer guidance to
network design.

For consensus dynamics, we establish the relations
between the proposed measures and other graph
based properties.
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