Problem: recover a superposition of k point sources in d-dim using bandlimited and noise corrupted Fourier measurements.

(Fourier measurements) \[f(s) = \int_{t \in \mathbb{R}^d} e^{i \pi <t,s>} x(dt) = \sum_{j=1}^{k} w_j e^{i \pi <\mu(j),s>} . \]

(Measurement noise) \[\tilde{f}(s) = f(s) + z(s), \quad |z(s)| \leq \epsilon_z , \forall s. \]
Super-resolution off the grid

\[x(t) = \sum_{j=1}^{k} w_j \delta_{\mu^{(j)}}. \quad \tilde{f}(s) = \sum_{j=1}^{k} w_j e^{i\pi \langle \mu^{(j)}, s \rangle} + z(s), \quad \forall s \]

✧ Problem

✧ Take measurements at different \(s \), try to recover \(\mu^{(j)}, s \)

✧ Goal:

✧ coarse measurements (cutoff frequency \(||s|| < R \))
✧ use a small number of Fourier measurements: \(m \)
✧ algorithm runs quickly
Super-resolution off the grid

- Minimum separation
 \[\Delta = \min_{j \neq j'} \| \mu(j) - \mu(j') \|_2 \]
 \[\Delta_\infty = \min_{j \neq j'} \| \mu(j) - \mu(j') \|_\infty \]

| | \(||s|| < R \) | \(m \) |
|----------------|-----------------|--------|
| **Prony’s method** | no stability guarantee | |
| (Matrix-Pencil / MUSIC / ESPRIT) | | |
| **Super-resolution (SDP)** | \(\frac{1}{\Delta_\infty} \) | \(\text{poly}(\left(\frac{1}{\Delta_\infty} \right)^d, k) \) |
| **Our algorithm** | \(\frac{1}{\Delta} \) | \((k + d)^2 \) |

- Algorithmic idea: Prony’s method on **Random** samples

NIPS 2015 Spotlight